The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of ...The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentrat...In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentration of 0.1~0.5 mol·L^(-1),the gaseous products were mainly hydrogen,methane,ethane and ethene.The volume fraction of hydrogen did not change much with different concentrations of DEHA.The volume fraction of methane and ethane decreased,but that of ethene increased,with increasing DEHA concentration.The volume fraction of hydrogen,methane and ethane increased with the dose.The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration.展开更多
The trace water-soluble radiolytic products of neat 1-butyl-3-methylimidazolium hexafluorophosphate([C4mim][PF6]) were identified by analysing water-washed samples of γ-irradiated ionic liquids. HF and difluorophosph...The trace water-soluble radiolytic products of neat 1-butyl-3-methylimidazolium hexafluorophosphate([C4mim][PF6]) were identified by analysing water-washed samples of γ-irradiated ionic liquids. HF and difluorophosphinic acid were confirmed as the main radiolytic products of [C4mim][PF6], and their radiation chemical yields were quantified by19 F NMR(G(F-) = 0.14 μmol/J, G(HOP(O)F2) = 0.053 μmol/J). Compared to [C4mim][NTf2], [C4mim][PF6] shows better radiation stability.展开更多
In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results sho...In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results show that the volume fraction of hydrogen and methane increases with the concentration of DMHA and dose,and the latter does not change markedly at high doses.展开更多
To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,...To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...展开更多
The tunneling ionization (TI) is the most dominated ionization process in the production of terahertz radiation by two femtosecond lasers, although its validity above the ionization threshold of some gases is uncertai...The tunneling ionization (TI) is the most dominated ionization process in the production of terahertz radiation by two femtosecond lasers, although its validity above the ionization threshold of some gases is uncertain. In the present research, we employ a 1D fluid code to simulate the efficiency of the produced terahertz radiation by two femtosecond laser beams in air plasma. Two ionization models in the context of the TI process which are the Ammosov-Delone-Krainov (ADK) for noble gases and its developed molecular ADK (MO-ADK) model for molecular gases are intrinsically used to conduct this study. The main target of the present research is to examine the validity of these models Above-Threshold-Ionization (ATI) of these gases. For this purpose, we simulated the ionization rate and the power spectrum of the produced radiation, in addition we numerically evaluated the efficiency of the produced radiation as function of the input beams intensity at particular energy fraction factor, relative phase and initial pulse duration of these beams. These calculations conducted for a selected noble gas at varying energy levels and a chosen molecular air plasma gas at different quantum numbers. Numerical results near and above the ionization threshold of the selected gases have clarified that the ADK and MO-ADK model are successful valid to study the efficiency of the produced THz radiation at low energy levels and small quantum numbers of the selected gases, meanwhile, with any further increase in the energy level and the quantum number values of these gases, both of the ADK and MO-ADK are failed to correctly analyze the efficiency process and estimate its fundamental parameters.展开更多
In this study, the gamma radiation shielding features of several environmentally friendly materials were investigated. For this purpose, several attenuation parameters, such as the mass attenuation coefficient (l=q), ...In this study, the gamma radiation shielding features of several environmentally friendly materials were investigated. For this purpose, several attenuation parameters, such as the mass attenuation coefficient (l=q), radiation protection efficiency (RPE), and effective atomic number (Zeff) were determined experimentally and compared with numerical data obtained using WinXCom software. In the measurements, the emitted gamma photons were counted by a gamma spectrometer equipped with an HPGe detector using 22Na, 54Mn, 57Co, 60Co, 133Ba, and 137Cs radioactive point sources in the energy region of 81–1333 keV. The obtained results indicate that the l=q and RPE values of the samples decrease with an increase in photon energy. The experimental values are in good agreement with those obtained using WinXCom software. The RPE and Zeff results show that among the studied materials, the NaY0.77Yb0.20Er0.03F4 sample has the best gamma radiation shielding effectiveness.展开更多
In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized b...In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized by radiation technique at low temperature (-78℃) and several kinds of copolymer carriers were obtained. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The etharol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg /( ml·h), which was 4 times as high as that of free cells. In this study, the effect of adding of crosslinking reagent (4G) in copolymer on activity of yeast cells immobilized with the carriers were also studied. It was found that the effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work.展开更多
Objective:To investigate the effects of radiation on growth-arrested(GA) and micronucleus-production(MP) rates,and the radioprotective properties of Thai medicinal plants in mouse macrophage cell line RAW264.7 in vitr...Objective:To investigate the effects of radiation on growth-arrested(GA) and micronucleus-production(MP) rates,and the radioprotective properties of Thai medicinal plants in mouse macrophage cell line RAW264.7 in vitro.Methods:Mouse macrophage cell line(RAW264.7) was cultured in vitro.Various radiation exposures, growth-arrested rate assay,micronucleus production assay,and radioprotection by Thai medicinal plants were performed.Results:The results showed that GA and MP rates forγ-rays and UV were dose-dependent. The 50%-affected dose ofγand UV radiation for the GA rate was 10 Gy and 159 microwatt/cm for 0.5 seconds, respectively.After X-ray exposure,there was no apparent effect on RAW264.7 cells,even with a fortyfold human diagnostic dose.Two exposures toγradiation at 20 Gy resulted in a significantly higher MP rate than 20 Gy single exposure or control(P【0.05).The Thai medicinal plants(Kamin-chun capsules,Curcuma longa Linn;Hed lingeu,Ganoderma lucidum;Ya Pakking capsule,Murdannia loriformis) could not prevent cell damage,but epigallocatechin gallate and L-cysteine could provide protection from 2 Gyγ-ray exposure. Conclusion:γradiation caused chromosomal damage during cell division and UV caused cell death, while X-ray radiation was safe.The radioprotective effects of Thai medicinal plants,Kamin-chun,Hed lingeu, and Ya Pakking,could not prevent cell damage in this study.展开更多
Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to ...Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to be completely safe, the use of ionizing radiation during medical diagnostic or interventional procedures should be as low as reasonably achievable(ALARA principle). Nevertheless, in cardiovascular medicine, radiation exposure for coronary percutaneous interventions or catheter ablation of cardiac arrhythmias may be high: for ablation of a complex arrhythmia, such as atrial fibrillation, the mean dose can be > 15 m Sv and in some cases > 50 m Sv. In interventional electrophysiology, although fluoroscopy has been widely used since the beginning to navigate catheters in the heart and the vessels and to monitor their position, the procedure is not based on fluoroscopic imaging. Therefore, nonfluoroscopic three-dimensional systems can be used to navigate electrophysiology catheters in the heart with no or minimal use of fluoroscopy. Although zerofluoroscopy procedures are feasible in limited series, there may be difficulties in using no fluoroscopy on a routine basis. Currently, a significant reduction in radiation exposure towards near zero-fluoroscopy procedures seems a simpler task to achieve, especially in ablation of complex arrhythmias, such as atrial fibrillation. The data reported in the literature suggest the following three considerations. First, the use of the non-fluoroscopic systems is associated with a consistent reduction in radiation exposure in multiple centers: the more sophisticated and reliable this technology is, the higher the reduction in radiation exposure. Second, the use of these systems does not automatically lead to reduction of radiation exposure, but an optimized workflow should be developed and adopted for a safe non-fluoroscopic navigation of catheters. Third, at any level of expertise, there is a specific learning curve for the operators in the non-fluoroscopic manipulation of catheters; however, the learning curve is shorter for more experienced operators compared to less experienced operators.展开更多
This paper studies the problems of mathematical description of physical processes in open non-equilibrium atmosphere. It is proposed that the mathematical description should be based on the idea that properties of an ...This paper studies the problems of mathematical description of physical processes in open non-equilibrium atmosphere. It is proposed that the mathematical description should be based on the idea that properties of an open system are determined by the properties of its elements and external constraints. It is also explained why atmosphere should be represented by an open non-equilibrium system of gas and radiation. Difference between physical processes in the above mentioned system and equilibrium atmosphere is given. The modification of equations of non-equilibrium thermodynamics for a system of gas and radiation is proposed. Possible ways for further development of tools of non-equilibrium thermodynamics are considered.展开更多
The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are ...The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are compared. The kinetics of radiation chemical yields of gas products at the irradiation of bituminous oil and its tar fraction have been investigated. Irradiation is conducted in the gamma-ray source of isotope 60Co at the dose rate of P = 0.27 Gy/s and absorbed doses D = 5-163 kGy. It is found that in comparison with oil faction, tar fraction of bituminous oil has a high resistance to radiation.展开更多
As a potential matrix of three-dimensional gel dosimeter, agarose hydrogels will be used for measuring radiation doses, hence the importance of studying their radiation resistance and radiolysis mechanism. Physical pr...As a potential matrix of three-dimensional gel dosimeter, agarose hydrogels will be used for measuring radiation doses, hence the importance of studying their radiation resistance and radiolysis mechanism. Physical property and chemical structure of physically cross-linked agarose hydrogel samples irradiated to 0–200 k Gy by60 Co γ-rays were analyzed by universal testing machine, gel permeation chromatography, fourier transform infrared spectrometer, ultraviolet visible spectroscopy, nuclear magnetic resonance, and gas chromatography. The results showed that agarose hydrogels had good radiation stability below 25 k Gy, and the maximum compression strength of sample was ca. 0.1 MPa at 25 k Gy. The irradiated samples degraded obviously and liquefied gradually with increasing doses. Compared with unirradiated sample, carbonyl groups, which generated from the molecular chains of agarose hydrogels, were observed at 25 k Gy and increased gradually with dose. The main gas products evolved from irradiated agarose hydrogels were H2, CO2, CO and CH4. Based on the analysis of radiolytic products, the radiolysis mechanism of agarose hydrogels under γ-radiation was proposed.展开更多
Downward shortwave radiation(DSR)is a critical variable in energy balance driving Earth’s surface processes.Satellite-derived and reanalysis DSR products have been developed and continuously improved during the last ...Downward shortwave radiation(DSR)is a critical variable in energy balance driving Earth’s surface processes.Satellite-derived and reanalysis DSR products have been developed and continuously improved during the last decades.However,as those products have different temporal resolutions,their performances in different time scales have not been well-documented,particularly in China.This study intended to evaluate several DSR products across multiple time scales(i.e.instantaneous,1-hourly,daily,and monthly average)and ecosystems in China.Six DSR products,including GLASS,BESS,CLARA-A2,MCD18A1,ERA5 and MERRA-2,were evaluated against ground measurements at Chinese Ecosystem Research Network(CERN)and integrated land-atmosphere interaction observation(TPDC)sites from 2009 to 2012.The instantaneous DSR of MCD18 showed a root mean square error(RMSE)of 146.02 W/m^(2).The hourly RMSE of ERA5(155.52 W/m^(2))was largely smaller than MERRA-2(188.53 W/m^(2)).On the daily and monthly scale,BESS had the most optimized accuracy among the six products(RMSE of 36.82 W/m^(2)).For the satellite-derived DSR products,the monthly accuracy at CERN can meet the threshold accuracy requirement set by World Meteorological Organization(WMO)for Global Numerical Weather Prediction(20 W/m^(2)).展开更多
This study examines the large amount of agricultural waste produced in Egypt between 2010 and 2019 by analysing data from various departments within the Agriculture Ministry.It also provides a comprehensive database o...This study examines the large amount of agricultural waste produced in Egypt between 2010 and 2019 by analysing data from various departments within the Agriculture Ministry.It also provides a comprehensive database on the biomass available from agricultural waste in Egypt and its potential applications for producing power,heat and chemical products.When biomass-pyrolysis systems powered by solar energy are used,research demonstrates the potential to convert agricultural waste into a variety of chemical compounds.This approach utilizes solar energy,a clean and renewable source,and has wide-ranging industrial and power generation applications.Despite Egypt’s reliance on agriculture,the country currently utilizes little biomass for energy production and has not previously used it as a source for creating chemical products,which could potentially save on the imported oil used in these industries.The findings of the study are graphically presented using histograms,pie charts,etc.The overall production of residues reached the 30-Mt level in 2019.Because it contains the most rice-cultivated land,Dakahlia(Lower Egypt region)produces the highest percentage of the total residue(37.17%).Qena governorate(Upper Egypt region)produces 1.14 metric tons of residues,with sugarcane accounting for 20.3%of the total.展开更多
Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(...Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(n)products under different spatial scales,spatial and temporal variations,and different conditions.The results showed that during 2000-2018,Global Land Surface Satellite Product(GLASS)-Moderate Resolution Imaging Spectroradiometer(MODIS)performed the best(RMSE=25.54 Wm^(-2),bias=-1.26 Wm^(-2)),followed by ERA5(the fifth-generation of European Centre for Medium-Range Weather Forecast Reanalysis)(RMSE=32.17 Wm^(-2),bias=-4.88 Wm^(-2))and GLASS-AVHRR(Advanced Very-High-Resolution Radiometer)(RMSE=33.10 Wm^(-2),bias=4.03 Wm^(-2)).During 1983-2018,GLASS-AVHRR and ERA5 ranked top and performed similarly,with RMSE values of 31.70 and 33.08 Wm^(-2)and biases of-4.56 and 3.48 Wm^(-2),respectively.The averaged multi-annual mean R_(n)over the global land surface of satellite products was higher than that of reanalysis products by about 10~30 Wm^(-2).These products differed remarkably in long-term trends variations,particularly pre-2000,but no significant trends were observed.Discrepancies were more frequent in satellite data,while reanalysis products showed smoother variations.Large discrepancies were found in regions with high latitudes,reflectance,and elevation which could be attributed to input radiative components,meteorological variables(e.g.,cloud properties,aerosol optical thickness),and applicability of the algorithms used.While further research is needed for detailed insights.展开更多
Lectin Cramoll-1,4, obtained from Cratylia mollis seeds (beans camaratu) was structurally characterized, biologically and pharmacologically, but its use as a biopharmaceutical is not well documented. The objective of ...Lectin Cramoll-1,4, obtained from Cratylia mollis seeds (beans camaratu) was structurally characterized, biologically and pharmacologically, but its use as a biopharmaceutical is not well documented. The objective of this study is to propose a biopharmaceutical formulation lectin Cramoll-1,4, test their hemagglutinating properties in vitro as well as the use of gamma radiation as a continuous process of decontamination formulation. It was made of the extraction and purification Cramoll-1,4, was developed a gel formulation using Carbopol? as a vehicle, at concentrations of 50, 100, 200, 300 and 600 μg was irradiated with 60Co gamma rays in a dose of 7.549 kGy·h–1. The proposed formulation at a concentration of 300 μg produced an increase in the hemagglutinating units Cramoll-1,4 due to the synergistic effect caused by gamma radiation. Considering the diverse use of lectins, specific molecular and structural factors, as well as changes resulting from its formulation, concentration, irradiation and route of administration is of utmost importance to continue the studies in vitro, for subsequent application in vivo to characterize the physiological and molecular processes involved in the response and cellular effects.展开更多
基金supported by the National Natural Science Foundation of China (Grants Nos.42122047 and 42306270)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant Nos.2021Z006 and 2023Z013)。
文摘The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
基金Natural Science Foundation of China (Contract No.20771074)Shanghai Leading Academic Disciplines (Contract No.T0105)
文摘In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentration of 0.1~0.5 mol·L^(-1),the gaseous products were mainly hydrogen,methane,ethane and ethene.The volume fraction of hydrogen did not change much with different concentrations of DEHA.The volume fraction of methane and ethane decreased,but that of ethene increased,with increasing DEHA concentration.The volume fraction of hydrogen,methane and ethane increased with the dose.The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration.
基金Supported by the National Natural Science Foundation of China(Nos.91126014 and 11079007)the Research Fund for the Doctoral Program of Higher Education of China(No.20100001110021)
文摘The trace water-soluble radiolytic products of neat 1-butyl-3-methylimidazolium hexafluorophosphate([C4mim][PF6]) were identified by analysing water-washed samples of γ-irradiated ionic liquids. HF and difluorophosphinic acid were confirmed as the main radiolytic products of [C4mim][PF6], and their radiation chemical yields were quantified by19 F NMR(G(F-) = 0.14 μmol/J, G(HOP(O)F2) = 0.053 μmol/J). Compared to [C4mim][NTf2], [C4mim][PF6] shows better radiation stability.
基金Supported by Natural Science Foundation of China(Contract No.20771074)Shanghai Leading Academic Disciplines(Contract No.S30109)
文摘In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results show that the volume fraction of hydrogen and methane increases with the concentration of DMHA and dose,and the latter does not change markedly at high doses.
基金Supported by Special Project of China Meteorological Administrationon Effects of Climate Change on Solar Energy in East ChinaSpecial fund of Meteorological Science and Technology Services inShandong Province in 2006~~
文摘To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...
文摘The tunneling ionization (TI) is the most dominated ionization process in the production of terahertz radiation by two femtosecond lasers, although its validity above the ionization threshold of some gases is uncertain. In the present research, we employ a 1D fluid code to simulate the efficiency of the produced terahertz radiation by two femtosecond laser beams in air plasma. Two ionization models in the context of the TI process which are the Ammosov-Delone-Krainov (ADK) for noble gases and its developed molecular ADK (MO-ADK) model for molecular gases are intrinsically used to conduct this study. The main target of the present research is to examine the validity of these models Above-Threshold-Ionization (ATI) of these gases. For this purpose, we simulated the ionization rate and the power spectrum of the produced radiation, in addition we numerically evaluated the efficiency of the produced radiation as function of the input beams intensity at particular energy fraction factor, relative phase and initial pulse duration of these beams. These calculations conducted for a selected noble gas at varying energy levels and a chosen molecular air plasma gas at different quantum numbers. Numerical results near and above the ionization threshold of the selected gases have clarified that the ADK and MO-ADK model are successful valid to study the efficiency of the produced THz radiation at low energy levels and small quantum numbers of the selected gases, meanwhile, with any further increase in the energy level and the quantum number values of these gases, both of the ADK and MO-ADK are failed to correctly analyze the efficiency process and estimate its fundamental parameters.
文摘In this study, the gamma radiation shielding features of several environmentally friendly materials were investigated. For this purpose, several attenuation parameters, such as the mass attenuation coefficient (l=q), radiation protection efficiency (RPE), and effective atomic number (Zeff) were determined experimentally and compared with numerical data obtained using WinXCom software. In the measurements, the emitted gamma photons were counted by a gamma spectrometer equipped with an HPGe detector using 22Na, 54Mn, 57Co, 60Co, 133Ba, and 137Cs radioactive point sources in the energy region of 81–1333 keV. The obtained results indicate that the l=q and RPE values of the samples decrease with an increase in photon energy. The experimental values are in good agreement with those obtained using WinXCom software. The RPE and Zeff results show that among the studied materials, the NaY0.77Yb0.20Er0.03F4 sample has the best gamma radiation shielding effectiveness.
基金This research projcct was financed by applied base research fund of jiangsu provicial Scicntific and Tcchniquuc Committee from 1989-1991
文摘In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized by radiation technique at low temperature (-78℃) and several kinds of copolymer carriers were obtained. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The etharol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg /( ml·h), which was 4 times as high as that of free cells. In this study, the effect of adding of crosslinking reagent (4G) in copolymer on activity of yeast cells immobilized with the carriers were also studied. It was found that the effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work.
基金supported by the Faculty of Tropical Medicine,Mahidol University.
文摘Objective:To investigate the effects of radiation on growth-arrested(GA) and micronucleus-production(MP) rates,and the radioprotective properties of Thai medicinal plants in mouse macrophage cell line RAW264.7 in vitro.Methods:Mouse macrophage cell line(RAW264.7) was cultured in vitro.Various radiation exposures, growth-arrested rate assay,micronucleus production assay,and radioprotection by Thai medicinal plants were performed.Results:The results showed that GA and MP rates forγ-rays and UV were dose-dependent. The 50%-affected dose ofγand UV radiation for the GA rate was 10 Gy and 159 microwatt/cm for 0.5 seconds, respectively.After X-ray exposure,there was no apparent effect on RAW264.7 cells,even with a fortyfold human diagnostic dose.Two exposures toγradiation at 20 Gy resulted in a significantly higher MP rate than 20 Gy single exposure or control(P【0.05).The Thai medicinal plants(Kamin-chun capsules,Curcuma longa Linn;Hed lingeu,Ganoderma lucidum;Ya Pakking capsule,Murdannia loriformis) could not prevent cell damage,but epigallocatechin gallate and L-cysteine could provide protection from 2 Gyγ-ray exposure. Conclusion:γradiation caused chromosomal damage during cell division and UV caused cell death, while X-ray radiation was safe.The radioprotective effects of Thai medicinal plants,Kamin-chun,Hed lingeu, and Ya Pakking,could not prevent cell damage in this study.
文摘Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to be completely safe, the use of ionizing radiation during medical diagnostic or interventional procedures should be as low as reasonably achievable(ALARA principle). Nevertheless, in cardiovascular medicine, radiation exposure for coronary percutaneous interventions or catheter ablation of cardiac arrhythmias may be high: for ablation of a complex arrhythmia, such as atrial fibrillation, the mean dose can be > 15 m Sv and in some cases > 50 m Sv. In interventional electrophysiology, although fluoroscopy has been widely used since the beginning to navigate catheters in the heart and the vessels and to monitor their position, the procedure is not based on fluoroscopic imaging. Therefore, nonfluoroscopic three-dimensional systems can be used to navigate electrophysiology catheters in the heart with no or minimal use of fluoroscopy. Although zerofluoroscopy procedures are feasible in limited series, there may be difficulties in using no fluoroscopy on a routine basis. Currently, a significant reduction in radiation exposure towards near zero-fluoroscopy procedures seems a simpler task to achieve, especially in ablation of complex arrhythmias, such as atrial fibrillation. The data reported in the literature suggest the following three considerations. First, the use of the non-fluoroscopic systems is associated with a consistent reduction in radiation exposure in multiple centers: the more sophisticated and reliable this technology is, the higher the reduction in radiation exposure. Second, the use of these systems does not automatically lead to reduction of radiation exposure, but an optimized workflow should be developed and adopted for a safe non-fluoroscopic navigation of catheters. Third, at any level of expertise, there is a specific learning curve for the operators in the non-fluoroscopic manipulation of catheters; however, the learning curve is shorter for more experienced operators compared to less experienced operators.
文摘This paper studies the problems of mathematical description of physical processes in open non-equilibrium atmosphere. It is proposed that the mathematical description should be based on the idea that properties of an open system are determined by the properties of its elements and external constraints. It is also explained why atmosphere should be represented by an open non-equilibrium system of gas and radiation. Difference between physical processes in the above mentioned system and equilibrium atmosphere is given. The modification of equations of non-equilibrium thermodynamics for a system of gas and radiation is proposed. Possible ways for further development of tools of non-equilibrium thermodynamics are considered.
文摘The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are compared. The kinetics of radiation chemical yields of gas products at the irradiation of bituminous oil and its tar fraction have been investigated. Irradiation is conducted in the gamma-ray source of isotope 60Co at the dose rate of P = 0.27 Gy/s and absorbed doses D = 5-163 kGy. It is found that in comparison with oil faction, tar fraction of bituminous oil has a high resistance to radiation.
基金Supported by the Science and Technology Development Foundation of China Academy of Engineering Physics(No.2013B0301035)
文摘As a potential matrix of three-dimensional gel dosimeter, agarose hydrogels will be used for measuring radiation doses, hence the importance of studying their radiation resistance and radiolysis mechanism. Physical property and chemical structure of physically cross-linked agarose hydrogel samples irradiated to 0–200 k Gy by60 Co γ-rays were analyzed by universal testing machine, gel permeation chromatography, fourier transform infrared spectrometer, ultraviolet visible spectroscopy, nuclear magnetic resonance, and gas chromatography. The results showed that agarose hydrogels had good radiation stability below 25 k Gy, and the maximum compression strength of sample was ca. 0.1 MPa at 25 k Gy. The irradiated samples degraded obviously and liquefied gradually with increasing doses. Compared with unirradiated sample, carbonyl groups, which generated from the molecular chains of agarose hydrogels, were observed at 25 k Gy and increased gradually with dose. The main gas products evolved from irradiated agarose hydrogels were H2, CO2, CO and CH4. Based on the analysis of radiolytic products, the radiolysis mechanism of agarose hydrogels under γ-radiation was proposed.
基金supported by National Natural Science Foundation of China Grant(42090012)the Hubei Provincial Natural Science Foundation(2021CFA082)+1 种基金National Key Research and Development Program of China(2020YF A0608704)the Fundamental Research Funds for the Central Universities through Wuhan University under Grant 2042022dx0001.
文摘Downward shortwave radiation(DSR)is a critical variable in energy balance driving Earth’s surface processes.Satellite-derived and reanalysis DSR products have been developed and continuously improved during the last decades.However,as those products have different temporal resolutions,their performances in different time scales have not been well-documented,particularly in China.This study intended to evaluate several DSR products across multiple time scales(i.e.instantaneous,1-hourly,daily,and monthly average)and ecosystems in China.Six DSR products,including GLASS,BESS,CLARA-A2,MCD18A1,ERA5 and MERRA-2,were evaluated against ground measurements at Chinese Ecosystem Research Network(CERN)and integrated land-atmosphere interaction observation(TPDC)sites from 2009 to 2012.The instantaneous DSR of MCD18 showed a root mean square error(RMSE)of 146.02 W/m^(2).The hourly RMSE of ERA5(155.52 W/m^(2))was largely smaller than MERRA-2(188.53 W/m^(2)).On the daily and monthly scale,BESS had the most optimized accuracy among the six products(RMSE of 36.82 W/m^(2)).For the satellite-derived DSR products,the monthly accuracy at CERN can meet the threshold accuracy requirement set by World Meteorological Organization(WMO)for Global Numerical Weather Prediction(20 W/m^(2)).
基金This work was supported by the Egyptian Science&Technology development Fund(STDF)of Egypt-China International Joint research(Grant No.41554).
文摘This study examines the large amount of agricultural waste produced in Egypt between 2010 and 2019 by analysing data from various departments within the Agriculture Ministry.It also provides a comprehensive database on the biomass available from agricultural waste in Egypt and its potential applications for producing power,heat and chemical products.When biomass-pyrolysis systems powered by solar energy are used,research demonstrates the potential to convert agricultural waste into a variety of chemical compounds.This approach utilizes solar energy,a clean and renewable source,and has wide-ranging industrial and power generation applications.Despite Egypt’s reliance on agriculture,the country currently utilizes little biomass for energy production and has not previously used it as a source for creating chemical products,which could potentially save on the imported oil used in these industries.The findings of the study are graphically presented using histograms,pie charts,etc.The overall production of residues reached the 30-Mt level in 2019.Because it contains the most rice-cultivated land,Dakahlia(Lower Egypt region)produces the highest percentage of the total residue(37.17%).Qena governorate(Upper Egypt region)produces 1.14 metric tons of residues,with sugarcane accounting for 20.3%of the total.
基金funded by the National Natural Science Foundation of China[grant numbers 42090012 and 41971291].
文摘Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(n)products under different spatial scales,spatial and temporal variations,and different conditions.The results showed that during 2000-2018,Global Land Surface Satellite Product(GLASS)-Moderate Resolution Imaging Spectroradiometer(MODIS)performed the best(RMSE=25.54 Wm^(-2),bias=-1.26 Wm^(-2)),followed by ERA5(the fifth-generation of European Centre for Medium-Range Weather Forecast Reanalysis)(RMSE=32.17 Wm^(-2),bias=-4.88 Wm^(-2))and GLASS-AVHRR(Advanced Very-High-Resolution Radiometer)(RMSE=33.10 Wm^(-2),bias=4.03 Wm^(-2)).During 1983-2018,GLASS-AVHRR and ERA5 ranked top and performed similarly,with RMSE values of 31.70 and 33.08 Wm^(-2)and biases of-4.56 and 3.48 Wm^(-2),respectively.The averaged multi-annual mean R_(n)over the global land surface of satellite products was higher than that of reanalysis products by about 10~30 Wm^(-2).These products differed remarkably in long-term trends variations,particularly pre-2000,but no significant trends were observed.Discrepancies were more frequent in satellite data,while reanalysis products showed smoother variations.Large discrepancies were found in regions with high latitudes,reflectance,and elevation which could be attributed to input radiative components,meteorological variables(e.g.,cloud properties,aerosol optical thickness),and applicability of the algorithms used.While further research is needed for detailed insights.
基金The Department of Energy’s Nuclear UFPE/FINEP the Nuclear Energy Institute in Rio de Janeiro
文摘Lectin Cramoll-1,4, obtained from Cratylia mollis seeds (beans camaratu) was structurally characterized, biologically and pharmacologically, but its use as a biopharmaceutical is not well documented. The objective of this study is to propose a biopharmaceutical formulation lectin Cramoll-1,4, test their hemagglutinating properties in vitro as well as the use of gamma radiation as a continuous process of decontamination formulation. It was made of the extraction and purification Cramoll-1,4, was developed a gel formulation using Carbopol? as a vehicle, at concentrations of 50, 100, 200, 300 and 600 μg was irradiated with 60Co gamma rays in a dose of 7.549 kGy·h–1. The proposed formulation at a concentration of 300 μg produced an increase in the hemagglutinating units Cramoll-1,4 due to the synergistic effect caused by gamma radiation. Considering the diverse use of lectins, specific molecular and structural factors, as well as changes resulting from its formulation, concentration, irradiation and route of administration is of utmost importance to continue the studies in vitro, for subsequent application in vivo to characterize the physiological and molecular processes involved in the response and cellular effects.