考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<...考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<q<∞,则该稳态系统只有平凡解.这个结论推广了已有的结果.展开更多
In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori...Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score.展开更多
Effective field theory(EFT)provides a model-independent framework for interpreting the results of dark matter(DM)direct detection experiments.In this study,we demonstrate that the two fermionic DM-quark tensor operato...Effective field theory(EFT)provides a model-independent framework for interpreting the results of dark matter(DM)direct detection experiments.In this study,we demonstrate that the two fermionic DM-quark tensor operators(χiσ^(μν)γ^(5)χ)(qσ_(μν)q)and(χσ_(μν)χ)(qσ_(μν)q)can contribute to the DM electric and magnetic dipole moments via nonperturbative QCD effects,in addition to the well-studied contact DM-nucleon operators.We then investigate the constraints on these two operators by considering both the contact and dipole contributions using the XENON1T nuclear recoil and Migdal effect data.We also recast other existing bounds on the DM dipole operators,derived from electron and nuclear recoil measurements in various direct detection experiments,as constraints on the two tensor operators.For m_(χ)■1GeV,our results significantly extend the reach of constraints on the DM-quark tensor operators to masses as low as 5MeV,with the bound exceeding that obtained by the Migdal effect with only contact interactions by approximately an order of magnitude.In particular,for the operator(χσ^(μν)iγ5χ)(qσ_(μν)q)with DM mass m_(χ)■10GeV,the latest PandaX constraint on the DM electric dipole moment puts more stringent bounds than the previous direct detection limit.We also briefly discuss the constraints obtained from experiments other than direct detection.展开更多
Objective: Superior Capsular Reconstruction (SCR) using a Tensor Fascia Lata (TFL) autograft is an evolving technique for treating irreparable rotator cuff tears. The Mihata technique, initially developed in Japan, ha...Objective: Superior Capsular Reconstruction (SCR) using a Tensor Fascia Lata (TFL) autograft is an evolving technique for treating irreparable rotator cuff tears. The Mihata technique, initially developed in Japan, has shown promising long-term results. However, a standardized post-operative rehabilitation protocol for this procedure in the USA is lacking. Purpose: This study aims to evaluate the outcomes of a comprehensive rehabilitation protocol following SCR with TFL autograft in a cohort of nine patients. Participants and Methods: A prospective observational study was conducted at Concentra Urgent Care, San Francisco. Nine patients, aged 55 - 65 years, underwent SCR with TFL autograft performed by a specialized orthopedic surgeon. Post-operative rehabilitation was managed using a structured protocol, divided into three phases focusing on passive exercises, progressive range of motion, and strengthening. Outcomes were measured using the Visual Analogue Scale (VAS) for pain, forward flexion range of motion (FF-ROM), and Single Assessment Numeric Evaluation (SANE) scores over a six-month period. Results: Significant improvements were observed in pain reduction (mean VAS decrease of −3.67 points, p = 0.01), ROM (mean FF increase of 41.11 degrees, p = 0.014), and SANE scores (mean improvement of 42.11%, p = 0.009), indicating the efficacy of the rehabilitation protocol. Conclusion: The comprehensive rehabilitation protocol following SCR with TFL autograft significantly improved pain, range of motion, and shoulder function in patients, suggesting its potential utility in clinical practice.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression...We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.展开更多
The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola...The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola software was used to estimate the CMT solution by selecting the velocity model that best suited the local and regional geological conditions in Indonesia and the surrounding areas.The data used in this study were earthquakes with magnitudes of 5.4 to 8.0.High-quality,real-time broadband seismographic data were provided by the International Federation of Digital Seismograph Networks Web Services(FDSNWS)and the European Integrated Data Archive(EIDA)Federation in Indonesia and the surrounding areas.Furthermore,the inversion process and filter adjustment were carried out on the seismographic data to obtain good CMT solutions.The CMT solutions from Gisola provided good-quality solutions,in which all earthquake data had A-level quality(high quality,with good variant reduction).The Gisola CMT solution was justified with the Global CMT(GCMT)solution by using the Kagan angle value,with an average of approximately 11.2°.This result suggested that the CMT solution generated from Gisola was trustworthy and reliable.The Gisola CMT solution was typically available within approximately 15 minutes after an earthquake occurred.Once it met the quality requirement,it was automatically published on the internet.The catalog of local and regional earthquake records obtained through this technology holds great promise for improving the current understanding of regional seismic activity and ongoing tectonic processes.The accurate and real-time CMT solution generated by implementing the Gisola algorithm consisted of moment tensors and moment magnitudes,which provided invaluable insights into earthquakes occurring in Indonesia and the surrounding areas.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time,...In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.展开更多
Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor...Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.展开更多
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mappin...The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.展开更多
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are...We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.展开更多
In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are...In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.展开更多
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav...In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective ...Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.展开更多
文摘考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<q<∞,则该稳态系统只有平凡解.这个结论推广了已有的结果.
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
基金supported by the National Key Research and Development Program of China under Grant 2022YFB4300504-4the HKRGC Research Impact Fund under Grant R5020-18.
文摘Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score.
基金Supported in part by the Major Project of Basic and Applied Basic Research of Guangdong Province,China(2020B0301030008)the National Natural Science Foundation of China(12035008,12247151,12305110,12347121)。
文摘Effective field theory(EFT)provides a model-independent framework for interpreting the results of dark matter(DM)direct detection experiments.In this study,we demonstrate that the two fermionic DM-quark tensor operators(χiσ^(μν)γ^(5)χ)(qσ_(μν)q)and(χσ_(μν)χ)(qσ_(μν)q)can contribute to the DM electric and magnetic dipole moments via nonperturbative QCD effects,in addition to the well-studied contact DM-nucleon operators.We then investigate the constraints on these two operators by considering both the contact and dipole contributions using the XENON1T nuclear recoil and Migdal effect data.We also recast other existing bounds on the DM dipole operators,derived from electron and nuclear recoil measurements in various direct detection experiments,as constraints on the two tensor operators.For m_(χ)■1GeV,our results significantly extend the reach of constraints on the DM-quark tensor operators to masses as low as 5MeV,with the bound exceeding that obtained by the Migdal effect with only contact interactions by approximately an order of magnitude.In particular,for the operator(χσ^(μν)iγ5χ)(qσ_(μν)q)with DM mass m_(χ)■10GeV,the latest PandaX constraint on the DM electric dipole moment puts more stringent bounds than the previous direct detection limit.We also briefly discuss the constraints obtained from experiments other than direct detection.
文摘Objective: Superior Capsular Reconstruction (SCR) using a Tensor Fascia Lata (TFL) autograft is an evolving technique for treating irreparable rotator cuff tears. The Mihata technique, initially developed in Japan, has shown promising long-term results. However, a standardized post-operative rehabilitation protocol for this procedure in the USA is lacking. Purpose: This study aims to evaluate the outcomes of a comprehensive rehabilitation protocol following SCR with TFL autograft in a cohort of nine patients. Participants and Methods: A prospective observational study was conducted at Concentra Urgent Care, San Francisco. Nine patients, aged 55 - 65 years, underwent SCR with TFL autograft performed by a specialized orthopedic surgeon. Post-operative rehabilitation was managed using a structured protocol, divided into three phases focusing on passive exercises, progressive range of motion, and strengthening. Outcomes were measured using the Visual Analogue Scale (VAS) for pain, forward flexion range of motion (FF-ROM), and Single Assessment Numeric Evaluation (SANE) scores over a six-month period. Results: Significant improvements were observed in pain reduction (mean VAS decrease of −3.67 points, p = 0.01), ROM (mean FF increase of 41.11 degrees, p = 0.014), and SANE scores (mean improvement of 42.11%, p = 0.009), indicating the efficacy of the rehabilitation protocol. Conclusion: The comprehensive rehabilitation protocol following SCR with TFL autograft significantly improved pain, range of motion, and shoulder function in patients, suggesting its potential utility in clinical practice.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金Project supported by the Beijing Natural Science Foundation(Grant No.1232026)the Qinxin Talents Program of BISTU(Grant No.QXTCP C201711)+2 种基金the R&D Program of Beijing Municipal Education Commission(Grant No.KM202011232017)the National Natural Science Foundation of China(Grant No.12304190)the Research fund of BISTU(Grant No.2022XJJ32).
文摘We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.
基金Universitas Negeri Surabaya,Universitas Sebelas Maret,and Universitas Syiah Kuala for providing research grants for the Indonesian Collaborative Research(RKI)scheme。
文摘The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola software was used to estimate the CMT solution by selecting the velocity model that best suited the local and regional geological conditions in Indonesia and the surrounding areas.The data used in this study were earthquakes with magnitudes of 5.4 to 8.0.High-quality,real-time broadband seismographic data were provided by the International Federation of Digital Seismograph Networks Web Services(FDSNWS)and the European Integrated Data Archive(EIDA)Federation in Indonesia and the surrounding areas.Furthermore,the inversion process and filter adjustment were carried out on the seismographic data to obtain good CMT solutions.The CMT solutions from Gisola provided good-quality solutions,in which all earthquake data had A-level quality(high quality,with good variant reduction).The Gisola CMT solution was justified with the Global CMT(GCMT)solution by using the Kagan angle value,with an average of approximately 11.2°.This result suggested that the CMT solution generated from Gisola was trustworthy and reliable.The Gisola CMT solution was typically available within approximately 15 minutes after an earthquake occurred.Once it met the quality requirement,it was automatically published on the internet.The catalog of local and regional earthquake records obtained through this technology holds great promise for improving the current understanding of regional seismic activity and ongoing tectonic processes.The accurate and real-time CMT solution generated by implementing the Gisola algorithm consisted of moment tensors and moment magnitudes,which provided invaluable insights into earthquakes occurring in Indonesia and the surrounding areas.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
文摘In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.
基金supported by the National Natural Science Foundation of China(No.41104068)the Deep Exploration in China,Sino Probe-03-05
文摘Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA063901 and No.2006AA06A201)
文摘The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
基金supported by the Scientific Research Starting Foundation of HoHai University,China(2084/40801136)the Fundamental Research Funds for the Central Universities(No.2009B12514)
文摘We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.
基金financially supported by the SinoProbe-09-01(201011078)
文摘In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.
基金supported by the Scientific Research Starting Foundation of HoHai University, China (No. 2084/40801136)the Fundamental Research Funds for the Central Universities (No.2009B12514).
文摘In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
基金The National Natural Science Foundation of China(No.50875078)the Natural Science Foundation of Jiangsu Province(No.BK2007115)the National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z421)
文摘Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.