We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga...Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s ...After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.展开更多
A new method for controlling the shape of the conditional output probability density function (PDF) for general nonlinear dynamic stochastic systems is proposed based on B-spline neural network (NN) model and T-S ...A new method for controlling the shape of the conditional output probability density function (PDF) for general nonlinear dynamic stochastic systems is proposed based on B-spline neural network (NN) model and T-S fuzzy model. Applying NN approximation to the measured PDFs, we transform the concerned problem into the tracking of given weights. Meanwhile, the complex multi-delay T-S fuzzy model with exogenous disturbances, parametric uncertainties and state constraints is used to represent the nonlinear weight dynamics. Moreover, instead of the non-convex design algorithms and PI control, the improved convex linear matrix inequality (LMI) algorithms and the generalized PID controller are proposed such that the multiple control objectives including stability, robustness, tracking performance and state constraint can be guaranteed simultaneously. Simulations are performed to demonstrate the efficiency of the proposed approach.展开更多
This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take ...This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take the form of statemultiplicative noises, are introduced in systems to describe the phenomenon of nonlinear disturbances. To resist non-Gaussian noises, we consider a new performance index called maximum correntropy criterion(MCC) which describes the similarity between two stochastic variables. To enhance the “robustness” of the kernel parameter selection on the resultant filtering performance, the Cauchy kernel function is adopted to calculate the corresponding correntropy. The goal of this paper is to design a Kalman-type filter for the underlying systems via maximizing the correntropy between the system state and its estimate. By taking advantage of an upper bound on the one-step prediction error covariance, a modified MCC-based performance index is constructed. Subsequently, with the assistance of a fixed-point theorem, the filter gain is obtained by maximizing the proposed cost function. In addition, a sufficient condition is deduced to ensure the uniqueness of the fixed point. Finally, the validity of the filtering method is tested by simulating a numerical example.展开更多
This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network...This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network.Stochastic optimization problems are usually tackled by variants of projected stochastic gradient descent.However,projecting a point onto a feasible set is often expensive.The Frank-Wolfe(FW)method has well-documented merits in handling convex constraints,but existing stochastic FW algorithms are basically developed for centralized settings.In this context,the present work puts forth a distributed stochastic Frank-Wolfe solver,by judiciously combining Nesterov's momentum and gradient tracking techniques for stochastic convex and nonconvex optimization over networks.It is shown that the convergence rate of the proposed algorithm is O(k^(-1/2))for convex optimization,and O(1/log_(2)(k))for nonconvex optimization.The efficacy of the algorithm is demonstrated by numerical simulations against a number of competing alternatives.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
In this paper, we analyze the quasi-stationary distribution of the stochastic <em>SVIR</em> (Susceptible, Vaccinated, Infected, Recovered) model for the measles. The quasi-stationary distributions, as disc...In this paper, we analyze the quasi-stationary distribution of the stochastic <em>SVIR</em> (Susceptible, Vaccinated, Infected, Recovered) model for the measles. The quasi-stationary distributions, as discussed by Danoch and Seneta, have been used in biology to describe the steady state behaviour of population models which exhibit discernible stationarity before to become extinct. The stochastic <em>SVIR</em> model is a stochastic <em>SIR</em> (Susceptible, Infected, Recovered) model with vaccination and recruitment where the disease-free equilibrium is reached, regardless of the magnitude of the basic reproduction number. But the mean time until the absorption (the disease-free) can be very long. If we assume the effective reproduction number <em>R</em><em><sub>p</sub></em> < 1 or <img src="Edit_67da0b97-83f9-42ef-8a00-a13da2d59963.bmp" alt="" />, the quasi-stationary distribution can be closely approximated by geometric distribution. <em>β</em> and <em>δ</em> stands respectively, for the disease transmission coefficient and the natural rate.展开更多
On the basis of the Langevin equation and the Fokker-Planck equation, a stochastic model of bubble distribution in a gas-solid fluidized bed was developed. A fluidized bed with a cross section of 0.3 m×0.02 m and...On the basis of the Langevin equation and the Fokker-Planck equation, a stochastic model of bubble distribution in a gas-solid fluidized bed was developed. A fluidized bed with a cross section of 0.3 m×0.02 m and a height of 0.8 m was used to investigate the bubble distribution with the photographic method. Two distributors were used with orifice diameters of 3 and 6 mm and opening ratios of 6.4% and 6.8%, respectively. The particles were color glass beads with diameters of O.3, 0.5 and 0.8 mm (Geldart group B particles). The model predictions are reasonable in accordance with the experiment data. The research results indicated that the distribution of bubble concentration was affected by the particle diameter, the fluidizing velocity, and the distributor style. The fluctuation extension of the distribution of bubble concentration narrowed as the particle diameter, fluidizing velocity and opening ratio of the distributor increased. For a given distributor and given particles the distribution was relatively steady along the bed height as the fluidizing velocity changed.展开更多
A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a uni...A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.展开更多
We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bi...We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bivariate normal case this dependence takes the form of a parameter (here the “expected value”) of one probability density depending continuously (here linearly) on realizations of the other random variable. The point is, that such a pattern does not need to be restricted to that classical case of the bivariate normal. We show that this paradigm can be generalized and viewed in ways that allows one to extend it far beyond the bivariate or multivariate normal probability distributions class.展开更多
The purpose of this study is to compare a negative binomial distribution with a negative binomial—Lindley by using stochastic orders. We characterize the comparisons in usual stochastic order, likelihood ratio order,...The purpose of this study is to compare a negative binomial distribution with a negative binomial—Lindley by using stochastic orders. We characterize the comparisons in usual stochastic order, likelihood ratio order, convex order, expectation order and uniformly more variable order based on theorem and some numerical example of comparisons between negative binomial random variable and negative binomial—Lindley random variable.展开更多
The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output sig...The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output signal’s amplitude is composed as a sum of the sought-for initial value and a random Gaussian noise. The Rician signal’s characteristics such as the average value and the noise dispersion have been shown to depend upon the Rice distribution’s parameters nonlinearly what has become a prerequisite for the development of a new approach to the stochastic Rician data analysis implying the joint signal and noise accurate evaluation. The joint computing of the Rice distribution’s parameters allows efficient reconstruction of the signal’s in-formative component against the noise background. A meaningful advantage of the proposed approach consists in the absence of restrictions connected with any a priori suppositions inherent to the traditional techniques. The results of the numerical experiments are provided confirming the efficiency of the elaborated approach to stochastic data analysis within the Rice statistical model.展开更多
Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax ...Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.展开更多
Dynamical behavior of a tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the a...Dynamical behavior of a tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the active state, induce the minimum of the average tumor-cell population to move toward a smaller non-Gaussian noise, but also decrease the mean first-passage time. The increase of white-noise intensity can increase the tumor-cell population and shorten the mean first-passage time, while the coupling strength between noise terms has opposite effects, and the noise correlation time has a very small effect.展开更多
In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs...In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.展开更多
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
基金the Natural Science Foundation of Ningxia Province(No.2021AAC03230).
文摘Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
基金supported by the State Grid Tianjin Electric Power Company Science and Technology Project (Grant No. KJ22-1-45)。
文摘After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60774013, 60874045, 60904030)
文摘A new method for controlling the shape of the conditional output probability density function (PDF) for general nonlinear dynamic stochastic systems is proposed based on B-spline neural network (NN) model and T-S fuzzy model. Applying NN approximation to the measured PDFs, we transform the concerned problem into the tracking of given weights. Meanwhile, the complex multi-delay T-S fuzzy model with exogenous disturbances, parametric uncertainties and state constraints is used to represent the nonlinear weight dynamics. Moreover, instead of the non-convex design algorithms and PI control, the improved convex linear matrix inequality (LMI) algorithms and the generalized PID controller are proposed such that the multiple control objectives including stability, robustness, tracking performance and state constraint can be guaranteed simultaneously. Simulations are performed to demonstrate the efficiency of the proposed approach.
基金supported in part by the National Natural Science Foundation of China (62273088, 62273087)the Shanghai Pujiang Program of China (22PJ1400400)the Program of Shanghai Academic/Technology Research Leader (20XD1420100)。
文摘This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take the form of statemultiplicative noises, are introduced in systems to describe the phenomenon of nonlinear disturbances. To resist non-Gaussian noises, we consider a new performance index called maximum correntropy criterion(MCC) which describes the similarity between two stochastic variables. To enhance the “robustness” of the kernel parameter selection on the resultant filtering performance, the Cauchy kernel function is adopted to calculate the corresponding correntropy. The goal of this paper is to design a Kalman-type filter for the underlying systems via maximizing the correntropy between the system state and its estimate. By taking advantage of an upper bound on the one-step prediction error covariance, a modified MCC-based performance index is constructed. Subsequently, with the assistance of a fixed-point theorem, the filter gain is obtained by maximizing the proposed cost function. In addition, a sufficient condition is deduced to ensure the uniqueness of the fixed point. Finally, the validity of the filtering method is tested by simulating a numerical example.
基金supported in part by the National Key R&D Program of China(2021YFB1714800)the National Natural Science Foundation of China(62222303,62073035,62173034,61925303,62088101,61873033)+1 种基金the CAAI-Huawei MindSpore Open Fundthe Chongqing Natural Science Foundation(2021ZX4100027)。
文摘This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network.Stochastic optimization problems are usually tackled by variants of projected stochastic gradient descent.However,projecting a point onto a feasible set is often expensive.The Frank-Wolfe(FW)method has well-documented merits in handling convex constraints,but existing stochastic FW algorithms are basically developed for centralized settings.In this context,the present work puts forth a distributed stochastic Frank-Wolfe solver,by judiciously combining Nesterov's momentum and gradient tracking techniques for stochastic convex and nonconvex optimization over networks.It is shown that the convergence rate of the proposed algorithm is O(k^(-1/2))for convex optimization,and O(1/log_(2)(k))for nonconvex optimization.The efficacy of the algorithm is demonstrated by numerical simulations against a number of competing alternatives.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
文摘In this paper, we analyze the quasi-stationary distribution of the stochastic <em>SVIR</em> (Susceptible, Vaccinated, Infected, Recovered) model for the measles. The quasi-stationary distributions, as discussed by Danoch and Seneta, have been used in biology to describe the steady state behaviour of population models which exhibit discernible stationarity before to become extinct. The stochastic <em>SVIR</em> model is a stochastic <em>SIR</em> (Susceptible, Infected, Recovered) model with vaccination and recruitment where the disease-free equilibrium is reached, regardless of the magnitude of the basic reproduction number. But the mean time until the absorption (the disease-free) can be very long. If we assume the effective reproduction number <em>R</em><em><sub>p</sub></em> < 1 or <img src="Edit_67da0b97-83f9-42ef-8a00-a13da2d59963.bmp" alt="" />, the quasi-stationary distribution can be closely approximated by geometric distribution. <em>β</em> and <em>δ</em> stands respectively, for the disease transmission coefficient and the natural rate.
文摘On the basis of the Langevin equation and the Fokker-Planck equation, a stochastic model of bubble distribution in a gas-solid fluidized bed was developed. A fluidized bed with a cross section of 0.3 m×0.02 m and a height of 0.8 m was used to investigate the bubble distribution with the photographic method. Two distributors were used with orifice diameters of 3 and 6 mm and opening ratios of 6.4% and 6.8%, respectively. The particles were color glass beads with diameters of O.3, 0.5 and 0.8 mm (Geldart group B particles). The model predictions are reasonable in accordance with the experiment data. The research results indicated that the distribution of bubble concentration was affected by the particle diameter, the fluidizing velocity, and the distributor style. The fluctuation extension of the distribution of bubble concentration narrowed as the particle diameter, fluidizing velocity and opening ratio of the distributor increased. For a given distributor and given particles the distribution was relatively steady along the bed height as the fluidizing velocity changed.
基金Natural Science Foundation of Hunan University of Technology,China(No.2012HZX08)the Special Foundation of National Independent Innovation Demonstration Area Construction of Zhuzhou(Applied Basic Research),China
文摘A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.
文摘We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bivariate normal case this dependence takes the form of a parameter (here the “expected value”) of one probability density depending continuously (here linearly) on realizations of the other random variable. The point is, that such a pattern does not need to be restricted to that classical case of the bivariate normal. We show that this paradigm can be generalized and viewed in ways that allows one to extend it far beyond the bivariate or multivariate normal probability distributions class.
文摘The purpose of this study is to compare a negative binomial distribution with a negative binomial—Lindley by using stochastic orders. We characterize the comparisons in usual stochastic order, likelihood ratio order, convex order, expectation order and uniformly more variable order based on theorem and some numerical example of comparisons between negative binomial random variable and negative binomial—Lindley random variable.
文摘The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output signal’s amplitude is composed as a sum of the sought-for initial value and a random Gaussian noise. The Rician signal’s characteristics such as the average value and the noise dispersion have been shown to depend upon the Rice distribution’s parameters nonlinearly what has become a prerequisite for the development of a new approach to the stochastic Rician data analysis implying the joint signal and noise accurate evaluation. The joint computing of the Rice distribution’s parameters allows efficient reconstruction of the signal’s in-formative component against the noise background. A meaningful advantage of the proposed approach consists in the absence of restrictions connected with any a priori suppositions inherent to the traditional techniques. The results of the numerical experiments are provided confirming the efficiency of the elaborated approach to stochastic data analysis within the Rice statistical model.
文摘Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005077, 11105095, and 11074184)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 10KJD140003)
文摘Dynamical behavior of a tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the active state, induce the minimum of the average tumor-cell population to move toward a smaller non-Gaussian noise, but also decrease the mean first-passage time. The increase of white-noise intensity can increase the tumor-cell population and shorten the mean first-passage time, while the coupling strength between noise terms has opposite effects, and the noise correlation time has a very small effect.
基金supported by National Natural Science Foundation of China (No. 61971161)Foundation of Science and Technology on Communication Networks Laboratory (No.6142104190410)Heilongjiang Touyan Team(No. HITTY20190009)
文摘In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.