A mathematical model has been formulated to describe the heat transfer in liquid foods flowing in circular ducts, subjected to microwave irradiations. Three types of liquids with different rheological behavior are con...A mathematical model has been formulated to describe the heat transfer in liquid foods flowing in circular ducts, subjected to microwave irradiations. Three types of liquids with different rheological behavior are considered: skim milk (Newtonian), apple sauce and tomato sauce as non-New-tonian fluids. Each one can flow with different velocities but always in laminar way. The temperature profiles have been obtained solving the transient momentum and heat equations by numerical resolution using the Finite Element Method. The generation term due to the microwave heating has been evaluated according to Lambert’s law. Dielectric properties are considered to be temperature dependent.展开更多
Microwave heating of liquid foods in laminar flow through a circular tube has been modeled. In particular, skim milk as a Newtonian fluid and apple sauce and tomato sauce as non-Newtonian fluids have been considered. ...Microwave heating of liquid foods in laminar flow through a circular tube has been modeled. In particular, skim milk as a Newtonian fluid and apple sauce and tomato sauce as non-Newtonian fluids have been considered. The temperature profiles have been obtained solving the motion and energy equations in transient regime and Maxwell’s equations in the frequency domain. Numerical resolution of Finite Element Method has been implemented in Comsol Multiphysics. The generation term due to the microwave heating has been evaluated according both to Lambert’s law and Poynting theorem. Finally, a comparison between the two methods has been made in order to check to what extent the results obtained with the simpler Lambert’s law approximation are comparable with those deriving from the exact solution of Maxwell equations. Dielectric properties are considered to be temperature dependent.展开更多
文摘A mathematical model has been formulated to describe the heat transfer in liquid foods flowing in circular ducts, subjected to microwave irradiations. Three types of liquids with different rheological behavior are considered: skim milk (Newtonian), apple sauce and tomato sauce as non-New-tonian fluids. Each one can flow with different velocities but always in laminar way. The temperature profiles have been obtained solving the transient momentum and heat equations by numerical resolution using the Finite Element Method. The generation term due to the microwave heating has been evaluated according to Lambert’s law. Dielectric properties are considered to be temperature dependent.
文摘Microwave heating of liquid foods in laminar flow through a circular tube has been modeled. In particular, skim milk as a Newtonian fluid and apple sauce and tomato sauce as non-Newtonian fluids have been considered. The temperature profiles have been obtained solving the motion and energy equations in transient regime and Maxwell’s equations in the frequency domain. Numerical resolution of Finite Element Method has been implemented in Comsol Multiphysics. The generation term due to the microwave heating has been evaluated according both to Lambert’s law and Poynting theorem. Finally, a comparison between the two methods has been made in order to check to what extent the results obtained with the simpler Lambert’s law approximation are comparable with those deriving from the exact solution of Maxwell equations. Dielectric properties are considered to be temperature dependent.