The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr...The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries.展开更多
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe...Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.展开更多
The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as ind...The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as indicator in the presence of methylamine and dimethylamine The influences of inert constituents and water on the titration were investigated, and a complete analytical method was determined. The results showed that the determination error of total amines increased with water increasing, while the effect of water on the determination of dimethylallylamine was little when the amount of water was within 5%, the relative error was generally within 1%, and that the end-point was acutely when about 10% chloroform was added. Compared with gas chromatography, this method is simple, convenient and accurate.展开更多
Non-aqueous phase enzymatic catalysis technology has been widely ap- plied in the area of food additives production. This paper reviewed the types of re- action medium of non-aqueous phase enzymatic catalysis reaction...Non-aqueous phase enzymatic catalysis technology has been widely ap- plied in the area of food additives production. This paper reviewed the types of re- action medium of non-aqueous phase enzymatic catalysis reaction, introduced the application of non-aqueous phase enzymatic catalysis technology in catalysis of L-ascorbic (isoascorbic) acid esters, short-chain acid esters, sugar esters, vitamin A esters, vi- tamin E esters, and other food additives, and finally predicted the prospects of non- aqueous phase enzymatic catalysis technology.展开更多
A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosa...A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.展开更多
The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The ent...The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effects between rings in complexes leads to that the equilibrium constants of reaction of the complexes (1∶2) is much less than that of the complexes (1∶1).展开更多
As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in thi...As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.展开更多
By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in...By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in borate buffer solution. This method can reduce observation errors in the determination of the endpoint, and thus provide better analytical precision(<0.08%) than present complexometric titration.展开更多
The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the opt...The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the optimal number of water molecules per sulfonic groups.In this particular case the polymer material under study was Nafion?117.Two different reactions were made: Neutralization and exchange.Both of them allow obtaining the same result.Conductometric titrations could be considered as a good method to study the neutralization and exchange reactions for polymeric materials used in fuel cells or electrolyzers.The implementation of this analytical technique allows reducing operation time of those types of materials.The waiting time between determinations permits to say that the amount of reactant consumed and products obtained were the same after each addition of titrant.展开更多
The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration...The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.展开更多
A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol coul...A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol could be transferred into a nitroso-compound by reacting with NaNO2. The titration end-point was obtained by the formation of a sharp cut in the oscillopolarographic with infinitesimal NaNO2 on double platinum electrodes. The results showed that phenol had an excellent linear relationship over the range of 4.82×10^-6 -9.65×10^-3 mol/L, the RSD of the proposed method was lower than 1.5%, and the spiked recoveries of three real water samples were in the range of 95.6%-106.9%.展开更多
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn...Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries.展开更多
A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial ten...A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.展开更多
Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), whic...Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), which can markedly alter during vegetation season. Among recently available measuring methods, surface charge-pH dependence of roots (as well as other biological objects) is most easily evaluated by potentiometric titration. Use of this method is also easy at different ionic strengths. Potentiometric titration also allows for estimation of the distribution of charge generating surface groups. However, many applications of this method seem to be based either on incorrect methodical or theoretical approaches. In this paper we discuss the methodical and theoretical backgrounds of the titration method. Basing on experimental titration curves of roots of barley grown in nutrient solution, we show inconsistency of surface charge results obtained at different measuring conditions. Limitations of theoretical interpretations of the results are outlined also.展开更多
Herein, the iodometric titration and HPLC-RP methods were compared for the determination of vitamin C in vitamin and mineral supplements. The methods were validated in terms of linearity, limits of detection (LOD), li...Herein, the iodometric titration and HPLC-RP methods were compared for the determination of vitamin C in vitamin and mineral supplements. The methods were validated in terms of linearity, limits of detection (LOD), limits of quantification (LOQ), precision, and recovery by using vitamin standards and a reference material SRM 3280 (multivitamin/multimineral tablets) obtained from the National Institute of Standards and Technology (NIST). A total of 22 samples of vitamin supplements, randomly acquired in local markets of Sao Paulo (Brazil) were evaluated for content of vitamin C by these two methodologies. The precision expressed as RSD was lower than 5% for both methods. LOD was 3.6 μg/mL for HPLC and 1.0 mg for titration, while LOQ were 12.0 μg/mL and 3.0 mg for HPLC and titration, respectively. Percent recoveries (%) of spiked samples ranged from 98.7 to 100.5 for HPLC and from 98 to 104 for titration. The contents of vitamin C in SRM 3280 (Certified value = 42.2 ± 3.7 mg/g) were 40.2 and 42.1 mg/g when determined by HPLC and titration respectively. Statistically, there was no difference in the analysed vitamin C content for half of the samples, irrespective of the method applied. HPLC was more sensitive, but the titrimetric method was faster and consumed less reagent. Although both methods were accurate in determining the vitamin C content in SRM 3280, the matrix constituents of some vitamin supplements may have interfered with the analysis.展开更多
In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a p...In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a potential health hazard. This paper demonstrates a multiparametric study of two colloidal titration methods: spectrophotometric and zeta potential end point detection. The first one was optimized to guarantee the accuracy of cationic commercial PE quantification. It includes the indicator dose optimization using analytical criteria for competing equilibria, a calibration curve for two ranges of CPE concentration (1 - 5 ppm and 5 - 100 ppm) and the interference study of flocculant and Sn in the CPE quantification. The second method provides a physicochemical validation of the electric surface phenomena occurring during the colloidal titration and the end point detection. As an additional contribution the zeta potential titration was discussed and proposed as an alternative method for quantifying CPE when the sample is metal free.展开更多
The demands for high-performance and low-cost batteries make K-ion batteries(KIBs) considered as promising supplements or alternatives for Li-ion batteries(LIBs). Nevertheless, there are only a small amount of convent...The demands for high-performance and low-cost batteries make K-ion batteries(KIBs) considered as promising supplements or alternatives for Li-ion batteries(LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K^+ ions. Diff erently, organic electrode materials(OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.展开更多
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des...The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.展开更多
Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery ...Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery operation, realization of this potential requires a judicious choice of solvent as well as polyoxometalate properties. We demonstrate here the superior performance of N,N-dimethylformamide(DMF)compared to acetonitrile as a solvent for redox flow batteries based on Li3PMo12O40. This compound displays two 1-electron transfers in acetonitrile but can access an extra quasi-reversible 2-electron redox process in DMF. A cell containing 10 mM solution of Li3PMo12O40 in DMF produced a cell voltage of 0.7 V with 2-electron transfers(State of Charge = 60%) and showed a good cyclability. As a means to boost energy density, operation of the redox flow battery at a higher concentration of 0.1 M Li3PMo12O40 produced cells with cell voltage of 0.6 V in acetonitrile and a cell voltage of 1.0 V in DMF;both showed excellent coulombic efficiencies of more than 90% over the course of 30 cycles. Energy density was also increased by employing an asymmetric cell with different polyoxometalates on each side to extend cell voltage.Li6P2W18O62 exhibited 3 quasi-reversible 2-electron transfers in the potential range between-2.05 V and-0.5 V vs. Ag/Ag+. 10 mM Li6P2W18O62/Li3PMo12O40 in DMF produced a cell with cell voltage of 1.3 V involving 4-electron transfers(State of Charge = 50%) with coulombic efficiency of nearly 100% and energy efficiency of nearly 70% throughout the test with more than 20 cycles. These promising results demonstrate proof-of-concept approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries.展开更多
基金supported by the National Natural Science Foundation of China(Nos:51503038 and 51873037).
文摘The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries.
基金supported by the National Natural Science Foundation of China (21825703, 21927814)the National Key R&D Program of China (2019YFA0405600, 2019YFA0706900, 2021YFA1200104, 2022YFC3400500)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0540200, XDB37040201)Plans for Major Provincial Science&Technology Projects (202303a07020004)Basic Research Program Based on Major Scientific Infrastructures,CAS (JZHKYPT-2021-05)the Youth Innovation Promotion Association,CAS (2022455)
文摘Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.
文摘The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as indicator in the presence of methylamine and dimethylamine The influences of inert constituents and water on the titration were investigated, and a complete analytical method was determined. The results showed that the determination error of total amines increased with water increasing, while the effect of water on the determination of dimethylallylamine was little when the amount of water was within 5%, the relative error was generally within 1%, and that the end-point was acutely when about 10% chloroform was added. Compared with gas chromatography, this method is simple, convenient and accurate.
基金Supported by Jiangxi Provincial Engineering & Technology Research Center for Food Additives Bio-ProductionScience & Technology Platform Construction Program of Jiangxi Province (2010DTZ01900)+1 种基金Priority Academic Program Development of Jiangsu Higher Education InstitutionsResearch Foundation for Advanced Talents of Jiangsu University (08JDG029)~~
文摘Non-aqueous phase enzymatic catalysis technology has been widely ap- plied in the area of food additives production. This paper reviewed the types of re- action medium of non-aqueous phase enzymatic catalysis reaction, introduced the application of non-aqueous phase enzymatic catalysis technology in catalysis of L-ascorbic (isoascorbic) acid esters, short-chain acid esters, sugar esters, vitamin A esters, vi- tamin E esters, and other food additives, and finally predicted the prospects of non- aqueous phase enzymatic catalysis technology.
文摘A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.
基金Supported by the National Nature Science Foundation of China(29873036)
文摘The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effects between rings in complexes leads to that the equilibrium constants of reaction of the complexes (1∶2) is much less than that of the complexes (1∶1).
基金the support of Key Laboratory of Chinese Medicine Preparation of Solid Dispersion,Gansu Longshenrongfa Pharmaceutical Industry Co.,Ltd.,Gansu Province,China
文摘As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.
文摘By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in borate buffer solution. This method can reduce observation errors in the determination of the endpoint, and thus provide better analytical precision(<0.08%) than present complexometric titration.
基金supported by the Defense Ministry of Argentina under Grant PIDDEF No.22/11
文摘The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the optimal number of water molecules per sulfonic groups.In this particular case the polymer material under study was Nafion?117.Two different reactions were made: Neutralization and exchange.Both of them allow obtaining the same result.Conductometric titrations could be considered as a good method to study the neutralization and exchange reactions for polymeric materials used in fuel cells or electrolyzers.The implementation of this analytical technique allows reducing operation time of those types of materials.The waiting time between determinations permits to say that the amount of reactant consumed and products obtained were the same after each addition of titrant.
文摘The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.
基金Project supported by the Creative Talented Person's Fund of Henan Province (High Teaching [2005]-126)the Natural Science Foundation of Henan Province (No. 0511053000)+1 种基金the Youth Science Foundation of Henan Normal University (No. 2004005)the Henan Key Laboratory for Environmental Pollution Control.
文摘A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol could be transferred into a nitroso-compound by reacting with NaNO2. The titration end-point was obtained by the formation of a sharp cut in the oscillopolarographic with infinitesimal NaNO2 on double platinum electrodes. The results showed that phenol had an excellent linear relationship over the range of 4.82×10^-6 -9.65×10^-3 mol/L, the RSD of the proposed method was lower than 1.5%, and the spiked recoveries of three real water samples were in the range of 95.6%-106.9%.
基金financial supported by the Natural Science Foundation of China(Grant No.21476224,21406219 and 51361135701)
文摘Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries.
文摘A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.
文摘Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), which can markedly alter during vegetation season. Among recently available measuring methods, surface charge-pH dependence of roots (as well as other biological objects) is most easily evaluated by potentiometric titration. Use of this method is also easy at different ionic strengths. Potentiometric titration also allows for estimation of the distribution of charge generating surface groups. However, many applications of this method seem to be based either on incorrect methodical or theoretical approaches. In this paper we discuss the methodical and theoretical backgrounds of the titration method. Basing on experimental titration curves of roots of barley grown in nutrient solution, we show inconsistency of surface charge results obtained at different measuring conditions. Limitations of theoretical interpretations of the results are outlined also.
文摘Herein, the iodometric titration and HPLC-RP methods were compared for the determination of vitamin C in vitamin and mineral supplements. The methods were validated in terms of linearity, limits of detection (LOD), limits of quantification (LOQ), precision, and recovery by using vitamin standards and a reference material SRM 3280 (multivitamin/multimineral tablets) obtained from the National Institute of Standards and Technology (NIST). A total of 22 samples of vitamin supplements, randomly acquired in local markets of Sao Paulo (Brazil) were evaluated for content of vitamin C by these two methodologies. The precision expressed as RSD was lower than 5% for both methods. LOD was 3.6 μg/mL for HPLC and 1.0 mg for titration, while LOQ were 12.0 μg/mL and 3.0 mg for HPLC and titration, respectively. Percent recoveries (%) of spiked samples ranged from 98.7 to 100.5 for HPLC and from 98 to 104 for titration. The contents of vitamin C in SRM 3280 (Certified value = 42.2 ± 3.7 mg/g) were 40.2 and 42.1 mg/g when determined by HPLC and titration respectively. Statistically, there was no difference in the analysed vitamin C content for half of the samples, irrespective of the method applied. HPLC was more sensitive, but the titrimetric method was faster and consumed less reagent. Although both methods were accurate in determining the vitamin C content in SRM 3280, the matrix constituents of some vitamin supplements may have interfered with the analysis.
文摘In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a potential health hazard. This paper demonstrates a multiparametric study of two colloidal titration methods: spectrophotometric and zeta potential end point detection. The first one was optimized to guarantee the accuracy of cationic commercial PE quantification. It includes the indicator dose optimization using analytical criteria for competing equilibria, a calibration curve for two ranges of CPE concentration (1 - 5 ppm and 5 - 100 ppm) and the interference study of flocculant and Sn in the CPE quantification. The second method provides a physicochemical validation of the electric surface phenomena occurring during the colloidal titration and the end point detection. As an additional contribution the zeta potential titration was discussed and proposed as an alternative method for quantifying CPE when the sample is metal free.
基金CAS-DOE Collaborative Project(121421KYSB20170032)DICP funding(ZZBS201707)National Natural Science Foundation of China(21706253)。
文摘The demands for high-performance and low-cost batteries make K-ion batteries(KIBs) considered as promising supplements or alternatives for Li-ion batteries(LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K^+ ions. Diff erently, organic electrode materials(OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.
基金supported by Natural Science Foundation of Shanghai (20ZR1400300)Textile Vision Applied Basic Research Project (J202005)National Key Research & Development Program of China (2017YFB0309600)。
文摘The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.
文摘Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery operation, realization of this potential requires a judicious choice of solvent as well as polyoxometalate properties. We demonstrate here the superior performance of N,N-dimethylformamide(DMF)compared to acetonitrile as a solvent for redox flow batteries based on Li3PMo12O40. This compound displays two 1-electron transfers in acetonitrile but can access an extra quasi-reversible 2-electron redox process in DMF. A cell containing 10 mM solution of Li3PMo12O40 in DMF produced a cell voltage of 0.7 V with 2-electron transfers(State of Charge = 60%) and showed a good cyclability. As a means to boost energy density, operation of the redox flow battery at a higher concentration of 0.1 M Li3PMo12O40 produced cells with cell voltage of 0.6 V in acetonitrile and a cell voltage of 1.0 V in DMF;both showed excellent coulombic efficiencies of more than 90% over the course of 30 cycles. Energy density was also increased by employing an asymmetric cell with different polyoxometalates on each side to extend cell voltage.Li6P2W18O62 exhibited 3 quasi-reversible 2-electron transfers in the potential range between-2.05 V and-0.5 V vs. Ag/Ag+. 10 mM Li6P2W18O62/Li3PMo12O40 in DMF produced a cell with cell voltage of 1.3 V involving 4-electron transfers(State of Charge = 50%) with coulombic efficiency of nearly 100% and energy efficiency of nearly 70% throughout the test with more than 20 cycles. These promising results demonstrate proof-of-concept approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries.