Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential s...Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.展开更多
We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics...The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
We investigate a kind of noise-induced transition to noisy chaos in dynamical systems. Due to similar phenomenological structures of stable hyperbolic attractors excited by various physical realizations from a given s...We investigate a kind of noise-induced transition to noisy chaos in dynamical systems. Due to similar phenomenological structures of stable hyperbolic attractors excited by various physical realizations from a given stationary random process, a specific Poincar6 map is established for stochastically perturbed quasi-Hamiltonian system. Based on this kind of map, various point sets in the Poincar6's cross-section and dynamical transitions can be analyzed. Results from the customary Duffing oscillator show that, the point sets in the Poincare's global cross-section will be highly compressed in one direction, and extend slowly along the deterministic period-doubling bifurcation trail in another direction when the strength of the harmonic excitation is fixed while the strength of the stochastic excitation is slowly increased. This kind of transition is called the noise-induced point-overspreading route to noisy chaos.展开更多
A stochastic dynamical system with double singularities driven by non-Gaussian noise is investigated. The Fokker Plank equation of the system is obtained through the path-integral approach and the method of transforma...A stochastic dynamical system with double singularities driven by non-Gaussian noise is investigated. The Fokker Plank equation of the system is obtained through the path-integral approach and the method of transformation. Based on the definition of Shannon's information entropy and the Schwartz inequality principle, the upper bound for the time derivative of entropy is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculations can be used to interpret the effects of the system dissipative parameter, the system singularity strength parameter, the noise correlation time and the noise deviation parameter on the upper bound.展开更多
The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified resp...The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.展开更多
Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approxi...Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.展开更多
This paper is concerned with the asymptotic behavior of solutions for a class of non-autonomous fractional FitzHugh-Nagumo equations deriven by additive white noise. We first provide some sufficient conditions for the...This paper is concerned with the asymptotic behavior of solutions for a class of non-autonomous fractional FitzHugh-Nagumo equations deriven by additive white noise. We first provide some sufficient conditions for the existence and uniqueness of solutions, and then prove the existence and uniqueness of tempered pullback random attractors for the random dynamical system generated by the solutions of considered equations in an appropriate Hilbert space. The proof is based on the uniform estimates and the decomposition of dynamical system.展开更多
In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the e...In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.展开更多
We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds...We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds number(R_e■10~2),β_0 a positive constant(β_0≈O(10^(-1)),r the Ekman dissipation constant(r≈o(1)),the external forcing term f(x,y,t)=-(dW)/(dt)(the definition of W will be given later)a Gaussian random field,white noise in time,subject to the展开更多
The static comer frequency and dynamic comer frequency in stochastic synthesis of ground motion from fi- nite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Further...The static comer frequency and dynamic comer frequency in stochastic synthesis of ground motion from fi- nite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower comer frequency, can be described by the source spectral model developed by the authors. A new dynamic comer frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.展开更多
With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of...With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of supercavity vehicle structures are simplified into two stationary random processes with a certain phase difference,and the random excitations are transformed into sinusoidal ones in terms of the pseudo excitation method.The stress response of stochastic structure can be obtained through combining Newmark method with pseudo excitation perturbation method,and then all required digital features for dynamic reliability of supercavity vehicle have be calculated.The expressions of the mean value and the variance of dynamic reliability of supercavity vehicle with stochastic parameters are educed on the basis of the Poisson formula of calculating dynamic reliability.Finally,the influence of the randomness of structural parameters on the dynamic reliability is analyzed.And the feasibility and availability of this method were validated by comparing with the Monte Carlo method.展开更多
A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriat...A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.展开更多
A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented....A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.展开更多
The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statisti...The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statistics of stochastic channel dynamics in Hodgkin–Huxley neurons. Here, we introduce a modified gate-based Langevin approach with rescaled noise strength to simulate stochastic channel dynamics. The rescaled independent gate and identical gate Langevin approaches improve the statistical results for the mean membrane voltage, inter-spike interval, and spike amplitude.展开更多
We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault r...We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.展开更多
This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules...This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.展开更多
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression b...Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.展开更多
In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are ...In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.展开更多
基金supported in part by the National Natural Science Foundation of China(11771001)the Key Natural Science Research Project of Universities of Anhui Province,China(2022AH050108)。
文摘Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
基金The project supported in part by USA NIH Grant under HG002894
文摘The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金supported by the National Natural Science Foundation of China (11172260 and 11072213)the Fundamental Research Fund for the Central University of China (2011QNA4001)
文摘We investigate a kind of noise-induced transition to noisy chaos in dynamical systems. Due to similar phenomenological structures of stable hyperbolic attractors excited by various physical realizations from a given stationary random process, a specific Poincar6 map is established for stochastically perturbed quasi-Hamiltonian system. Based on this kind of map, various point sets in the Poincar6's cross-section and dynamical transitions can be analyzed. Results from the customary Duffing oscillator show that, the point sets in the Poincare's global cross-section will be highly compressed in one direction, and extend slowly along the deterministic period-doubling bifurcation trail in another direction when the strength of the harmonic excitation is fixed while the strength of the stochastic excitation is slowly increased. This kind of transition is called the noise-induced point-overspreading route to noisy chaos.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘A stochastic dynamical system with double singularities driven by non-Gaussian noise is investigated. The Fokker Plank equation of the system is obtained through the path-integral approach and the method of transformation. Based on the definition of Shannon's information entropy and the Schwartz inequality principle, the upper bound for the time derivative of entropy is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculations can be used to interpret the effects of the system dissipative parameter, the system singularity strength parameter, the noise correlation time and the noise deviation parameter on the upper bound.
基金Project supported by the National Natural Science Foundation of China (Grant No.11002061)
文摘The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.
文摘Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.
文摘This paper is concerned with the asymptotic behavior of solutions for a class of non-autonomous fractional FitzHugh-Nagumo equations deriven by additive white noise. We first provide some sufficient conditions for the existence and uniqueness of solutions, and then prove the existence and uniqueness of tempered pullback random attractors for the random dynamical system generated by the solutions of considered equations in an appropriate Hilbert space. The proof is based on the uniform estimates and the decomposition of dynamical system.
文摘In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.
基金Foundation item:The work was supported in part by the NSFC(No.90511009).
文摘We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds number(R_e■10~2),β_0 a positive constant(β_0≈O(10^(-1)),r the Ekman dissipation constant(r≈o(1)),the external forcing term f(x,y,t)=-(dW)/(dt)(the definition of W will be given later)a Gaussian random field,white noise in time,subject to the
基金supported by National Natural Science Foundation of China under grant No. 50778058 and 90715038National Key Technology Research and Development Program under grant No. 2006BAC13B02
文摘The static comer frequency and dynamic comer frequency in stochastic synthesis of ground motion from fi- nite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower comer frequency, can be described by the source spectral model developed by the authors. A new dynamic comer frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.
文摘With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of supercavity vehicle structures are simplified into two stationary random processes with a certain phase difference,and the random excitations are transformed into sinusoidal ones in terms of the pseudo excitation method.The stress response of stochastic structure can be obtained through combining Newmark method with pseudo excitation perturbation method,and then all required digital features for dynamic reliability of supercavity vehicle have be calculated.The expressions of the mean value and the variance of dynamic reliability of supercavity vehicle with stochastic parameters are educed on the basis of the Poisson formula of calculating dynamic reliability.Finally,the influence of the randomness of structural parameters on the dynamic reliability is analyzed.And the feasibility and availability of this method were validated by comparing with the Monte Carlo method.
基金supported by NSF of China (10901065, 10971225, and11028102)the NSF Grants 1025422 and 0731201the Cheung Kong Scholars Program, and an open research grant from the State Key Laboratory for Nonlinear Mechanics at the Chinese Academy of Sciences
文摘A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China (No,A200214)
文摘A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.11125419)the National Natural Science Foundation of China(Grant No.10925525)+1 种基金the Funds for the Leading Talents of Fujian ProvinceChina
文摘The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statistics of stochastic channel dynamics in Hodgkin–Huxley neurons. Here, we introduce a modified gate-based Langevin approach with rescaled noise strength to simulate stochastic channel dynamics. The rescaled independent gate and identical gate Langevin approaches improve the statistical results for the mean membrane voltage, inter-spike interval, and spike amplitude.
文摘We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.
文摘This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.
基金Federal Highway Administration Under Grant No. DDEGRD-06-X-00408
文摘Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
文摘In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.