期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Optimal Design of Non-axisymmetric Endwall with Variable-fidelity CFD Model
1
作者 Liu Chen Xu-yang Zhang +2 位作者 Ren Dai Cheng-xiong Pan Mei-bao Zhang 《风机技术》 2018年第5期12-19,共8页
Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution sp... Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension.Final most effective endwall contour is obtained through screening all available samples with surrogate-based model.Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall.Overall averaged heat transfer coefficient is reduced. 展开更多
关键词 non-axisymmetric ENDWALL optimal Design TURBINE ROTOR Variable-FidelityCFDModel
下载PDF
Design Optimization of Non-Axisymmetric Vane for an Axial Compressor under Inlet Distortion 被引量:2
2
作者 ZHANG Min DU Juan +4 位作者 ZHAO Hongliang QIU Jiahui BA Dun CHEN Yang NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1321-1334,共14页
The flow field at the inlet of compressors is generally encountered combined total pressure and swirl distortion for either aircraft engine with S-duct or gas turbine with lateral air intake.This inevitably deteriorat... The flow field at the inlet of compressors is generally encountered combined total pressure and swirl distortion for either aircraft engine with S-duct or gas turbine with lateral air intake.This inevitably deteriorates compressor aerodynamic performance,including not only the efficiency or pressure ratio but also the operation stability.In order to conquer this issue,appropriate measures such as integrating flow control techniques and modifying inlet or compressor design are of benefits.Due to this motivation,this article develops a full-annular two-dimensional(2D)and a partial-annular three-dimension(3D)optimization strategy for non-axisymmetric vane design.Firstly,two numerical simulation methods for evaluating performance of full-annular 2D vane and compressor with partial-annular 3D vane are developed.The swirl patterns at the inlet of a 1.5-stage axial compressor are analyzed and parametrized,and the parameterization is transferred to characterize the circumferential distribution of geometrical parameters of the vane profile.These approaches dramatically reduce computational simulation costs without violating the non-axisymmetric flow distortion patterns.Then various full-annular 2D sections at different radial locations are constructed as design space.The designed vane is reconstructed and 3D numerical simulations are performed to examine performance of the non-axisymmetric vane and the compressor with it.Also,partial annular 3D optimization is conducted for balancing compressor efficiency and stall margin.Results indicate that the designed non-axisymmetric vane based on full-annular optimization approach can decrease the vane total pressure loss under the considered inlet flow distortion,while those using partial-annular optimization achieve positive effects on compressor stall margin. 展开更多
关键词 combined total pressure and swirl distortion axial compressor non-axisymmetric vane optimization aerodynamic performance
原文传递
Performance Improvements of a Subsonic Axial-Flow Compressor by Means of a Non-Axisymmetric Stator Hub End-Wall 被引量:1
3
作者 ZHANG Xuefeng LU Xingen ZHU Junqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第6期539-546,共8页
This paper deals with the application of a non-axisyrmnetric hub end-wall on the stator of a single stage high subsonic axial-flow compressor. In order to obtain a state-of-the-art stator non-axisymmetric hub end-wall... This paper deals with the application of a non-axisyrmnetric hub end-wall on the stator of a single stage high subsonic axial-flow compressor. In order to obtain a state-of-the-art stator non-axisymmetric hub end-wall con- figuration fulfilling the requirements for higher efficiency and total pressure ratio, an automated multi-objective optimizer was used, in conjunction with 3D-RANS-flow simulations. For the purpose of quantifying the effect of the optimal stator non axis-symmetric hub contouring on the compressor performance and its effects on the sub- sonic axial-flow compressor stator end-wall flow field structure, the coupled flow of the compressor stage with the baseline, axisymmetric and the non-axisynunetric stator hub end-wall was simulated with a state-of-the- art multi-block flow 3D CFD solver. Based on the CFD simulations, the optimal compressor hub end-wall con- figuration is expected to increase the peak efficiency by approximately 2.04 points and a slight increase of the to- tal pressure ratio. Detailed analyses of the numerical flow visualization at the hub have uncovered the different hub flow topologies between the cases with axisymmetric and non-axisymmetric hub end-walls. It was found that that the primary performance enhancement afforded by the non-axisymmelric hub end-wall is a result of the end-wall flow structure modification. Compared to the smooth wall case, the non-axisymmetric hub end-wall can reduce the formation and development of in-passage secondary flow by aerodynamic loading redistribution. 展开更多
关键词 Axial-flow compressor non-axisymmetric end-wall Numerical simulation
原文传递
Investigation of Non-Axisymmetric Endwall Contouring in a Compressor Cascade 被引量:7
4
作者 LIU Xiwu JIN Donghai GUI Xingmin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第6期490-503,共14页
The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi-... The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS). 展开更多
关键词 non-axisymmetric endwall contouring Compressor cascade Corner separation Wind tunnel experiments optimization
原文传递
Numerical Investigation and Non-Axisymmetric Endwall Profiling of a Turbine Stage 被引量:2
5
作者 REHMAN Abdul LIU Bo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第4期811-825,共15页
This paper presents an optimization of a high pressure turbine by constructing non-axisymmetric endwalls to the stator row and the rotor hub.The optimization was quantified by using optimization algorithms based on th... This paper presents an optimization of a high pressure turbine by constructing non-axisymmetric endwalls to the stator row and the rotor hub.The optimization was quantified by using optimization algorithms based on the multi-objective function.The objective was to increase total-to-total efficiency with the constraint on the mass flow rate equal to the design point value.In order to ensure that global optimum could be achieved,the function of parameters was first approximated through the artificial neural network,and then optimum was achieved by implementing the genetic algorithm.It was adopted through the design and optimization environment of FineTM/Design3 D.Three individual treatments of the endwalls were presented.Firstly,the hub and the shroud of the stator were optimized together.Secondly,the hub of the rotor was optimized.Thirdly,the rotor hub was optimized in the presence of the optimized stator.The result of the investigation showed that the optimized shape of the endwalls can significantly help to increase the efficiency up to 0.18%with the help of a reduction of the transverse pressure gradient.The coefficient of secondary kinetic energy,entropy coefficient,spanwise mass averaged entropy were reduced.In order to investigate the periodic effects,the design of the optimized turbine under steady simulations was confirmed through unsteady simulations.The last part of the investigation made sure that the performance improvement remained consistent over the full operating line at off-design conditions by the implementation of non-axisymmetric endwalls. 展开更多
关键词 optimization non-axisymmetric ENDWALL high pressure turbine stage efficiency secondary kinetic energy STEADY UNSTEADY OFF-DESIGN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部