Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water whe...Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.展开更多
In this work,eight commonly used and recently developed cubic EOSs have beenextensively tested for the calculation of thermodynamic properties,including vapor pressure,vaporand liquid densities and heat of vaporizatio...In this work,eight commonly used and recently developed cubic EOSs have beenextensively tested for the calculation of thermodynamic properties,including vapor pressure,vaporand liquid densities and heat of vaporization for 26 pure CFCs and their alternatives.The modifiedDu-Guo EOS is recommended for the vapor-liquid equilibria calculations of mixtures for its goodaccuracy.A method for the development of the optimized mixture compositions of CFC alternativeshas been proposed by using minimization of deviations between the vapor pressures of CFC and thealternative mixtures of interest.As examples,two binary mixtures R22-R142b and R22-R152a,and aternary R22-R142b-R152a have been tested.The results show that the vapor pressure of R12 can bewell duplicated by a mixture refrigerant with the optimized composition.On the other hand,thedeviations between the heat of vaporization are somewhat apparent within 10 percent.Moreover,allthe mixtures discussed here are of the characteristics of being near azeotropic。展开更多
To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,et...To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.展开更多
Microchannel flow boiling heat transfer has the advantages of strong heat dissipation capacity,good temperature uniformity,and compact structure.It is an excellent way to thermally manage electronic devices,but when t...Microchannel flow boiling heat transfer has the advantages of strong heat dissipation capacity,good temperature uniformity,and compact structure.It is an excellent way to thermally manage electronic devices,but when the heat flux exceeds CHF(Critical Heat Flux),the heat transfer performance deteriorates as the working fluid dries out.Non-azeotropic mixtures have the potential to effectively delay or avoid dry-out during the boiling process due to their temperature slide characteristics which causes the mass transfer resistance.To understand the influence of non-azeotropic mixtures on microchannel flow boiling,using the phase-change microchannel heat sink as the research object,the experiments on the flow boiling heat transfer performance of R245fa/R134a mixtures under different working conditions were carried out,and the characteristics of flow boiling heat transfer were obtained under the different working conditions,and comparison was developed with those of pure substance R245fa.The results demonstrated that a small amount of low-boiling-point components in the high-boiling-point working fluid inhibited boiling heat transfer to some extent,and lowered the average heat transfer coefficient under the non-dryout condition slightly lower than that of the pure substance;however,it also effectively delayed the onset of local dry-out and prevented significant deterioration in thermal transfer performance under the lower mass flow rate and higher heat flux,which could enhance the heat sink's stability.展开更多
With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed o...With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.展开更多
In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new re...In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new refrigerant is zero and its basic thermodynamic properties are similar to those of R404A, but its global warming potential (GWP) is much smaller than those of R507A and R404A. Meanwhile, theoretical calculations show that, under the working condition 1 (the average evaporation temperature: -23℃, the average condensing temperature: 43℃, the superheat temperature: 28℃, the subcooling temperature: 5 ℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.33% and 15.48% higher, re- spectively, than those of R404A. The coefficient of performance (COP) of the new mixture is 5.19% higher than that of R404A and the pressure ratio of the new mixture is 0.82% lower than that of R404A. Equally, under the working condition II (the average evaporation temperature: -40℃, the average condensing temperature: 35℃, the superheating temperature: 30 ~C, the subcooling temperature: 5℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.24% and 20.58% higher, respectively, than those of R404A. The COP of the new mixture is 4.60% higher than that of R404A and the pressure ratio of the new mixture is similar to that of R404A. The performances of the new mixture and R404A are compared in a vapor compressor refrigeration apparatus originally designed for R404A under several working conditions (condensing temperatures: 35-45℃, evaporation temperatures: -40--20℃). Experimental results show that the new mixture can obtain a higher COP, by 6.3% to 12.1%, and a lower pressure ratio, by 1.8% to 6.6%, compared to R404A; although the discharge temperature of the new mixture is slightly higher than that of R404A. The advantages of the new mixture will be further verified in the actual system.展开更多
New corresponding temperature and corresponding enthalpy of refrigerant mix- tures were defined. The relationship between saturated liquid corresponding en- thalpy and corresponding temperature of refrigerant mixtures...New corresponding temperature and corresponding enthalpy of refrigerant mix- tures were defined. The relationship between saturated liquid corresponding en- thalpy and corresponding temperature of refrigerant mixtures accorded with that of pure components. The characteristic parameters of saturated liquid enthalpy dif- ference of refrigerant mixtures were calculated by three methods according to the different application conditions. The generalized equation of saturated liquid en- thalpy of refrigerant mixtures was presented. The calculated values were compared with the values in literature for five ternary and binary refrigerant mixtures, namely R404A, R407A, R407B, R32/R134a, and R410A. The overall average absolute devia- tion was less than 1.0%.展开更多
The computation with the theory of modified Brayton Cycle indicates that higher cooling power and coefficient of performance for a pulse tube refrigerator can be achieved with He-H2 mixture as working gas than those w...The computation with the theory of modified Brayton Cycle indicates that higher cooling power and coefficient of performance for a pulse tube refrigerator can be achieved with He-H2 mixture as working gas than those with pure He in the temperature region of 30 K. In addition, it is found that Er3Ni, a regenerative material, is able to absorb H2 and produces Er3NiHx. The computation presents that the regenerative performance of Er3NiHx is better than that of Er3Ni due to its higher volume specific heat. Experimental results show that the pulse tube refrigeration performance in 30 K temperature region is enhanced greatly with He-H2 mixture and Er3NiHx packing.展开更多
为了适应节能与环境保护的需求,研究了一种适用于自复叠制冷系统的新型绿色混合制冷工质(R290/R744)的汽液相平衡特性。根据相平衡条件采用PT状态方程结合Van der Waals混合规则推导出该混合制冷工质的相平衡计算式,通过软件编程计算了...为了适应节能与环境保护的需求,研究了一种适用于自复叠制冷系统的新型绿色混合制冷工质(R290/R744)的汽液相平衡特性。根据相平衡条件采用PT状态方程结合Van der Waals混合规则推导出该混合制冷工质的相平衡计算式,通过软件编程计算了两种有工程实用意义的相平衡问题,一种是已知混合物压力和液相摩尔分数,计算泡点温度和气相摩尔分数;另一种是已知混合物压力和气相摩尔分数,计算露点温度和液相摩尔分数,并根据计算数据绘制了汽液平衡曲线。数据显示最大相对误差为4.840%,最小相对误差为0.005%。计算结果表明,采用给出的R290/R744混合制冷剂相平衡计算式具有较高的计算精度,从而为采用该混合制冷剂的自复叠制冷循环研究奠定基础。展开更多
Alternative refrigerants have been used in refrigerating and air-conditioning systemsdue to the phase out of CFC-12, HCFC-22 and R502 etc. Most of them are mixtures.The composition fractionation and thermal performanc...Alternative refrigerants have been used in refrigerating and air-conditioning systemsdue to the phase out of CFC-12, HCFC-22 and R502 etc. Most of them are mixtures.The composition fractionation and thermal performance change during refrigerant leakedout from system must be paid attention. The compositions of mixture THR02 were mea-sured by gas chromatographic analysis. Then we developed a general model to calculate thecomposition fractionation of zeotropic, near-azeotropic and azeotropic mixtures. The max-imum deviations between the calculated compositions and experimental results are within5% for the mixture THR02, R4O7C, R404A and R507. THR02 is a near-azeotropic mixture,it is remain unflammable under the worst case, and the change of system performance onlyresulted from composition fractionation during refrigerant leakage can be neglected.展开更多
基金Supported by Major State Basic Research Development Program of China ("973" Program, No. 2009CB219907)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0936)
文摘Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.
文摘In this work,eight commonly used and recently developed cubic EOSs have beenextensively tested for the calculation of thermodynamic properties,including vapor pressure,vaporand liquid densities and heat of vaporization for 26 pure CFCs and their alternatives.The modifiedDu-Guo EOS is recommended for the vapor-liquid equilibria calculations of mixtures for its goodaccuracy.A method for the development of the optimized mixture compositions of CFC alternativeshas been proposed by using minimization of deviations between the vapor pressures of CFC and thealternative mixtures of interest.As examples,two binary mixtures R22-R142b and R22-R152a,and aternary R22-R142b-R152a have been tested.The results show that the vapor pressure of R12 can bewell duplicated by a mixture refrigerant with the optimized composition.On the other hand,thedeviations between the heat of vaporization are somewhat apparent within 10 percent.Moreover,allthe mixtures discussed here are of the characteristics of being near azeotropic。
基金financial support from the National Natural Science Foundation of China(No.51576115)the Shandong Provincial Natural Science Foundation of China(No.ZR2018BEE026)+1 种基金the China Postdoctoral Science Foundation(No.2018M642655)the Fundamental Research Funds of Shandong University of China(No.2017GN0026)。
文摘To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.
基金supported by the National Natural Science Foundation of China(No.52076185)the Natural Science Foundation of Zhejiang Province(No.LZ19E060001)the Open Project of Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering(No.KF2019-02)。
文摘Microchannel flow boiling heat transfer has the advantages of strong heat dissipation capacity,good temperature uniformity,and compact structure.It is an excellent way to thermally manage electronic devices,but when the heat flux exceeds CHF(Critical Heat Flux),the heat transfer performance deteriorates as the working fluid dries out.Non-azeotropic mixtures have the potential to effectively delay or avoid dry-out during the boiling process due to their temperature slide characteristics which causes the mass transfer resistance.To understand the influence of non-azeotropic mixtures on microchannel flow boiling,using the phase-change microchannel heat sink as the research object,the experiments on the flow boiling heat transfer performance of R245fa/R134a mixtures under different working conditions were carried out,and the characteristics of flow boiling heat transfer were obtained under the different working conditions,and comparison was developed with those of pure substance R245fa.The results demonstrated that a small amount of low-boiling-point components in the high-boiling-point working fluid inhibited boiling heat transfer to some extent,and lowered the average heat transfer coefficient under the non-dryout condition slightly lower than that of the pure substance;however,it also effectively delayed the onset of local dry-out and prevented significant deterioration in thermal transfer performance under the lower mass flow rate and higher heat flux,which could enhance the heat sink's stability.
基金supported by the National Natural Science Foundation of China (Grant No. 50976079)Science and Technology Support Key Project of Tianjin (Grant No. 10ZCKFGX01700)
文摘With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.
基金supported by the Nation Natural Science Foundation of China (No. 50806063)the Program for Key Innovative Research Team of Zhejiang Province (No. 2009R50036), China
文摘In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new refrigerant is zero and its basic thermodynamic properties are similar to those of R404A, but its global warming potential (GWP) is much smaller than those of R507A and R404A. Meanwhile, theoretical calculations show that, under the working condition 1 (the average evaporation temperature: -23℃, the average condensing temperature: 43℃, the superheat temperature: 28℃, the subcooling temperature: 5 ℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.33% and 15.48% higher, re- spectively, than those of R404A. The coefficient of performance (COP) of the new mixture is 5.19% higher than that of R404A and the pressure ratio of the new mixture is 0.82% lower than that of R404A. Equally, under the working condition II (the average evaporation temperature: -40℃, the average condensing temperature: 35℃, the superheating temperature: 30 ~C, the subcooling temperature: 5℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.24% and 20.58% higher, respectively, than those of R404A. The COP of the new mixture is 4.60% higher than that of R404A and the pressure ratio of the new mixture is similar to that of R404A. The performances of the new mixture and R404A are compared in a vapor compressor refrigeration apparatus originally designed for R404A under several working conditions (condensing temperatures: 35-45℃, evaporation temperatures: -40--20℃). Experimental results show that the new mixture can obtain a higher COP, by 6.3% to 12.1%, and a lower pressure ratio, by 1.8% to 6.6%, compared to R404A; although the discharge temperature of the new mixture is slightly higher than that of R404A. The advantages of the new mixture will be further verified in the actual system.
基金Supported by the National Natural Science Foundation of China (Grant No. 50336020)
文摘New corresponding temperature and corresponding enthalpy of refrigerant mix- tures were defined. The relationship between saturated liquid corresponding en- thalpy and corresponding temperature of refrigerant mixtures accorded with that of pure components. The characteristic parameters of saturated liquid enthalpy dif- ference of refrigerant mixtures were calculated by three methods according to the different application conditions. The generalized equation of saturated liquid en- thalpy of refrigerant mixtures was presented. The calculated values were compared with the values in literature for five ternary and binary refrigerant mixtures, namely R404A, R407A, R407B, R32/R134a, and R410A. The overall average absolute devia- tion was less than 1.0%.
文摘The computation with the theory of modified Brayton Cycle indicates that higher cooling power and coefficient of performance for a pulse tube refrigerator can be achieved with He-H2 mixture as working gas than those with pure He in the temperature region of 30 K. In addition, it is found that Er3Ni, a regenerative material, is able to absorb H2 and produces Er3NiHx. The computation presents that the regenerative performance of Er3NiHx is better than that of Er3Ni due to its higher volume specific heat. Experimental results show that the pulse tube refrigeration performance in 30 K temperature region is enhanced greatly with He-H2 mixture and Er3NiHx packing.
文摘为了适应节能与环境保护的需求,研究了一种适用于自复叠制冷系统的新型绿色混合制冷工质(R290/R744)的汽液相平衡特性。根据相平衡条件采用PT状态方程结合Van der Waals混合规则推导出该混合制冷工质的相平衡计算式,通过软件编程计算了两种有工程实用意义的相平衡问题,一种是已知混合物压力和液相摩尔分数,计算泡点温度和气相摩尔分数;另一种是已知混合物压力和气相摩尔分数,计算露点温度和液相摩尔分数,并根据计算数据绘制了汽液平衡曲线。数据显示最大相对误差为4.840%,最小相对误差为0.005%。计算结果表明,采用给出的R290/R744混合制冷剂相平衡计算式具有较高的计算精度,从而为采用该混合制冷剂的自复叠制冷循环研究奠定基础。
文摘Alternative refrigerants have been used in refrigerating and air-conditioning systemsdue to the phase out of CFC-12, HCFC-22 and R502 etc. Most of them are mixtures.The composition fractionation and thermal performance change during refrigerant leakedout from system must be paid attention. The compositions of mixture THR02 were mea-sured by gas chromatographic analysis. Then we developed a general model to calculate thecomposition fractionation of zeotropic, near-azeotropic and azeotropic mixtures. The max-imum deviations between the calculated compositions and experimental results are within5% for the mixture THR02, R4O7C, R404A and R507. THR02 is a near-azeotropic mixture,it is remain unflammable under the worst case, and the change of system performance onlyresulted from composition fractionation during refrigerant leakage can be neglected.