This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be ob...This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be obtained by referring to the integral transform and the transfer matrix technique. However, former solutions usually exist in the cylindrical coordinate system subjected, to axisymmetric loading. Based on the proposed solutions in the Cartesian coordinate, it is very easy to solve asymmetric problems and consider the condition with internal loads in multi-layered geo-materials. Moreover, point load solutions can be used to construct solutions for analytical examination of elastic problems and incorporated into numerical schemes such as boundary element methods. The results discussed in this paper indicate that there is no problem in the evaluation of the point load solutions with high accuracy and efficiency, and that the material non-homogeneity has a significant effect on the elastic field due to adjacent loading.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 51008188)the China Postdoctoral Science Foundation (No. 20100470677)
文摘This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be obtained by referring to the integral transform and the transfer matrix technique. However, former solutions usually exist in the cylindrical coordinate system subjected, to axisymmetric loading. Based on the proposed solutions in the Cartesian coordinate, it is very easy to solve asymmetric problems and consider the condition with internal loads in multi-layered geo-materials. Moreover, point load solutions can be used to construct solutions for analytical examination of elastic problems and incorporated into numerical schemes such as boundary element methods. The results discussed in this paper indicate that there is no problem in the evaluation of the point load solutions with high accuracy and efficiency, and that the material non-homogeneity has a significant effect on the elastic field due to adjacent loading.