This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise consta...This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.展开更多
Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters ...Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.展开更多
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small sphe...A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.展开更多
In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programm...In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.展开更多
The bore-center annular shaped charge(BCASC)is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges.In this paper,the influence of three liner materials,...The bore-center annular shaped charge(BCASC)is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges.In this paper,the influence of three liner materials,i.e.molybdenum,nickel and copper,on BCASC formation and penetrating into steel targets was investigated by experiment and numerical simulation.The simulation results were well consistent with the experimental results.This study showed that,at 0.50D standoff distance,the axial velocity of the molybdenum projectile was lower than that of the nickel and copper projectiles.The nickel and copper projectiles had almost the same head velocity.The absolute values of the radial velocity of the molybdenum projectile head was lower than that of the nickel and copper projectiles.However,at 0.75D standoff distance,the absolute values of the radial velocity of the molybdenum projectile head became much greater than that of the nickel and copper projectile heads.The projectile formed by BCASC with the molybdenum liner had the highest penetration depth of 61.5 mm,which was 10.0%and 21.3%higher than that generated by the copper and nickel projectiles.展开更多
Surface charges can modify the elastic modulus of nanostructure,leading to the change of the phonon and thermal properties in semiconductor nanostructure.In this work,the influence of surface charges on the phonon pro...Surface charges can modify the elastic modulus of nanostructure,leading to the change of the phonon and thermal properties in semiconductor nanostructure.In this work,the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated.In the framework of continuum mechanics,the modified elastic modulus can be derived for the nanofilm with surface charges.The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation,phonon group velocity,density of states of phonons in nanofilm with the surface charges.The phonon thermal conductivity of nanofilm can be obtained by considering surface charges.The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm.Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons.The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm.Based on these theoretical results,one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges.展开更多
It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devi...It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devices. By studying the lithiation mechanism of Li_4Ti_5O_12 (LTO) using in-situ electron holography, we find that double charge layers are formed at the interface of the insulating Li_4Ti_5O_12 (Li_4) phase and the semiconducting Li_7Ti_5O_12 (Li_7) phase, and can greatly boost the lithiation kinetics. The electron wave phase of the LTO particle is found to gradually shrink with the interface movement, leaving a positive electric field from Li_7 to Li_4 phase. Once the capacitive interface charges are formed, the lithiation of the core/shell particle could be established within 10 s. The ultrafast kinetics is attributed to the built-in interface potential and the mixed Ti3+/Ti4+ sites at the interface that could be maximally lowering the thermodynamic barrier for Li ion migration.展开更多
The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equation...The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.展开更多
In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influenc...In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.展开更多
A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced ch...A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.展开更多
In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result ...In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design.展开更多
Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge cons...Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions.展开更多
On 28 January 2022,DeepMind Technologies announced the addition of the proteomes of 27 organisms to its AlphaFold Protein Structures Database(AlphaFold DB),a free online resource for sci-entists[1].DeepMind,the London...On 28 January 2022,DeepMind Technologies announced the addition of the proteomes of 27 organisms to its AlphaFold Protein Structures Database(AlphaFold DB),a free online resource for sci-entists[1].DeepMind,the London-based,artificial intelligence(AI)-focused subsidiary of Google’s parent company,Alphabet,selected these proteomes in alignment with the priorities of the World Health Organization.展开更多
By the multi-scale expansion method an effect of adiabatic variation of dust charges on dust-acoustic soliton is investigated.It is found that the amplitude of the soliton decreases while its width narrows in comparis...By the multi-scale expansion method an effect of adiabatic variation of dust charges on dust-acoustic soliton is investigated.It is found that the amplitude of the soliton decreases while its width narrows in comparison with the case of constant dust charges.展开更多
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the...The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.展开更多
Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far.The use of scanning probe microscopy provides an important way to quantitatively s...Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far.The use of scanning probe microscopy provides an important way to quantitatively study the transfer, accumulation, and dissipation of triboelectric charges in the process of triboelectrification. Two-dimensional materials are considered to be key materials for new electronic devices in the post-Moore era due to their atomic-scale size advantages. If the electrostatic field generated by triboelectrification can be used to replace the traditional gate electrostatic field, it is expected to simplify the structure of two-dimensional electronic devices and reconfigure them at any time according to actual needs. Here, we investigate the triboelectrification process of various two-dimensional materials such as MoS_(2), WSe_(2),and ZnO. Different from traditional bulk materials, after two-dimensional materials are rubbed, the triboelectric charges generated may tunnel through the two-dimensional materials to the underlying substrate surface. Because the tunneling triboelectric charge is protected by the twodimensional material, its stable residence time on the substrate surface can reach more than 7 days, which is more than tens of minutes for the traditional triboelectric charge. In addition, the electrostatic field generated by the tunneling triboelectric charge can effectively regulate the carrier transport performance of two-dimensional materials, and the source–drain current of the field effect device regulated by the triboelectric floating gate is increased by nearly 60 times. The triboelectric charge tunneling phenomenon in two-dimensional materials is expected to be applied in the fields of new two-dimensional electronic devices and reconfigurable functional circuits.展开更多
Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an ...Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an excellent HER catalyst due to its suitable H*binding,its alkali HER catalytic property need to be improved because of the sluggish water dissociation kinetics.In this work,nitrogen with small atomic radius and metallophilicity is employed to adjust local charges of atomically dispersed Mo^(δ+)sites on Co nanosheets to trigger water dissociation.Theoretical calculations suggest that the energy barrier of water dissociation can be effectively reduced by introducing nitrogen coordinated Mo^(δ+)sites.To realize this speculation,atomically dispersed Mo^(δ+)sites with nitrogen coordination of Mo(N)/Co were prepared via reconstruction of CoMoO_(4).High angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)and X-ray absorption spectroscopy(XAS)demonstrate the coordination of N atoms with atomically dispersed Mo atoms,leading to the local charges of atomically dispersed Mo^(δ+)sites in Mo(N)/Co.The measurement from ambient pressure X-ray photoelectron spectroscopy(AP-XPS)reveals that the Mo^(δ+)sites promote the adsorption and activation of water molecule.Therefore,the Mo(N)/Co exhibits an excellent activity,which need only an overpotential of 39 mV to reach the current density of 10 mA cm^(-2).The proposed strategy provides an advance pathway to design and boost alkaline HER activity at the atomic-level.展开更多
基金supported by the National Natural Science Foundation of China(11871134,12171166)the Fundamental Research Funds for the Central Universities(DUT23LAB303)。
文摘This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.
文摘Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
基金Projects(51304239,51374243)supported by the National Natural Science Foundation of China
文摘A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
文摘In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.
基金supported by the National Natural Science Foundation of China(No.11732003)Beijing Natural Science Foundation(No.8182050)+1 种基金Science Challenge Project(No.TZ2016001)National Key R&D Program of China(No.2017YFC0804700)
文摘The bore-center annular shaped charge(BCASC)is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges.In this paper,the influence of three liner materials,i.e.molybdenum,nickel and copper,on BCASC formation and penetrating into steel targets was investigated by experiment and numerical simulation.The simulation results were well consistent with the experimental results.This study showed that,at 0.50D standoff distance,the axial velocity of the molybdenum projectile was lower than that of the nickel and copper projectiles.The nickel and copper projectiles had almost the same head velocity.The absolute values of the radial velocity of the molybdenum projectile head was lower than that of the nickel and copper projectiles.However,at 0.75D standoff distance,the absolute values of the radial velocity of the molybdenum projectile head became much greater than that of the nickel and copper projectile heads.The projectile formed by BCASC with the molybdenum liner had the highest penetration depth of 61.5 mm,which was 10.0%and 21.3%higher than that generated by the copper and nickel projectiles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11772294,11621062,and 11302189)the Fundamental Research Funds for the Central Universities,China(Grant No.2017QNA4031)
文摘Surface charges can modify the elastic modulus of nanostructure,leading to the change of the phonon and thermal properties in semiconductor nanostructure.In this work,the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated.In the framework of continuum mechanics,the modified elastic modulus can be derived for the nanofilm with surface charges.The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation,phonon group velocity,density of states of phonons in nanofilm with the surface charges.The phonon thermal conductivity of nanofilm can be obtained by considering surface charges.The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm.Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons.The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm.Based on these theoretical results,one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges.
基金supported by the National Natural Science Foundation of China (Nos. 51501085, 11704019, 51522212 and 51421002)National Program on Key Basic Research Project (2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200)
文摘It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devices. By studying the lithiation mechanism of Li_4Ti_5O_12 (LTO) using in-situ electron holography, we find that double charge layers are formed at the interface of the insulating Li_4Ti_5O_12 (Li_4) phase and the semiconducting Li_7Ti_5O_12 (Li_7) phase, and can greatly boost the lithiation kinetics. The electron wave phase of the LTO particle is found to gradually shrink with the interface movement, leaving a positive electric field from Li_7 to Li_4 phase. Once the capacitive interface charges are formed, the lithiation of the core/shell particle could be established within 10 s. The ultrafast kinetics is attributed to the built-in interface potential and the mixed Ti3+/Ti4+ sites at the interface that could be maximally lowering the thermodynamic barrier for Li ion migration.
文摘The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.
基金the financial support from National Natural Science Foundation of China (No. 51607128)Natural Science Foundation of Hubei Province (No. 2016CFB111)China Postdoctoral Science Foundation (No. 2016M602353)
文摘In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.
基金This research was supported by the National Key Research and Development Program of China(Grant No.2017YFC1501504)the National Natural Science Foundation of China(Grant Nos.41875003,41805002)the Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2019LASW-A03).
文摘A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.
基金supported by the National Natural Science Foundations of China (51808550, 52078133)the China Postdoctoral Science Foundation (2020M671296)。
文摘In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design.
基金Supported by the National Natural Science Foundation of China(11272059,11221202)Program for New Century Excellent Talents in University(NCET-12-0037)
文摘Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions.
文摘On 28 January 2022,DeepMind Technologies announced the addition of the proteomes of 27 organisms to its AlphaFold Protein Structures Database(AlphaFold DB),a free online resource for sci-entists[1].DeepMind,the London-based,artificial intelligence(AI)-focused subsidiary of Google’s parent company,Alphabet,selected these proteomes in alignment with the priorities of the World Health Organization.
基金Supported by the National Natural Science Foundation of China under Grant No.19675006in part by the Asia-Africa Association for Plasma Training,and Association for Plasma Study of China.
文摘By the multi-scale expansion method an effect of adiabatic variation of dust charges on dust-acoustic soliton is investigated.It is found that the amplitude of the soliton decreases while its width narrows in comparison with the case of constant dust charges.
基金supported by the National Key Research and Development Program(Grant No.2016YFB0900900)National Natural Science Foundation of China(Grant No.51577064)
文摘The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
基金supported by the National Key Research and Development Program of China (No.2018YFA0703500)the National Natural Science Foundation of China(Nos.52232006,52188101,52102153,52072029,51991340,and 51991342)+2 种基金the Overseas Expertise Introduction Projects for Discipline Innovation (No.B14003)the China Postdoctoral Science Foundation (No.2021M700379)the Fundamental Research Funds for Central Universities(No.FRF-TP-18-001C1)。
文摘Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far.The use of scanning probe microscopy provides an important way to quantitatively study the transfer, accumulation, and dissipation of triboelectric charges in the process of triboelectrification. Two-dimensional materials are considered to be key materials for new electronic devices in the post-Moore era due to their atomic-scale size advantages. If the electrostatic field generated by triboelectrification can be used to replace the traditional gate electrostatic field, it is expected to simplify the structure of two-dimensional electronic devices and reconfigure them at any time according to actual needs. Here, we investigate the triboelectrification process of various two-dimensional materials such as MoS_(2), WSe_(2),and ZnO. Different from traditional bulk materials, after two-dimensional materials are rubbed, the triboelectric charges generated may tunnel through the two-dimensional materials to the underlying substrate surface. Because the tunneling triboelectric charge is protected by the twodimensional material, its stable residence time on the substrate surface can reach more than 7 days, which is more than tens of minutes for the traditional triboelectric charge. In addition, the electrostatic field generated by the tunneling triboelectric charge can effectively regulate the carrier transport performance of two-dimensional materials, and the source–drain current of the field effect device regulated by the triboelectric floating gate is increased by nearly 60 times. The triboelectric charge tunneling phenomenon in two-dimensional materials is expected to be applied in the fields of new two-dimensional electronic devices and reconfigurable functional circuits.
基金the International Science and Technology Cooperation Program(2017YFE0127800 and 2018YFE0203400)the Natural Science Foundation of China(21872174,21762036 and U1932148)+7 种基金the Hunan Provincial Science and Technology Program(2017XK2026)the Shenzhen Science and Technology Innovation Project(JCYJ20180307151313532)Innovation and Entrepreneurship Training Program for College Students(S202110670023)the Natural Science Foundation of Science and Technology Department of Guizhou Province([2019]1297)the Special Project of Science and Technology Department of Guizhou Province([2020]QNSYXM03)the Natural Science Foundation of Education Department of Guizhou Province([2019]213,[2015]66)Teaching Quality Improvement Project of Qiannan Normal University for Nationalities([2017]50)the Beam Lines of BL01C1,BL24A1 in the NSRRC(MOST 109-2113-M-213-002)and beamline BL10B in National Synchrotron Radiation Laboratory。
文摘Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an excellent HER catalyst due to its suitable H*binding,its alkali HER catalytic property need to be improved because of the sluggish water dissociation kinetics.In this work,nitrogen with small atomic radius and metallophilicity is employed to adjust local charges of atomically dispersed Mo^(δ+)sites on Co nanosheets to trigger water dissociation.Theoretical calculations suggest that the energy barrier of water dissociation can be effectively reduced by introducing nitrogen coordinated Mo^(δ+)sites.To realize this speculation,atomically dispersed Mo^(δ+)sites with nitrogen coordination of Mo(N)/Co were prepared via reconstruction of CoMoO_(4).High angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)and X-ray absorption spectroscopy(XAS)demonstrate the coordination of N atoms with atomically dispersed Mo atoms,leading to the local charges of atomically dispersed Mo^(δ+)sites in Mo(N)/Co.The measurement from ambient pressure X-ray photoelectron spectroscopy(AP-XPS)reveals that the Mo^(δ+)sites promote the adsorption and activation of water molecule.Therefore,the Mo(N)/Co exhibits an excellent activity,which need only an overpotential of 39 mV to reach the current density of 10 mA cm^(-2).The proposed strategy provides an advance pathway to design and boost alkaline HER activity at the atomic-level.