We describe two new derivations of the chi-square distribution. The first derivation uses the induction method, which requires only a single integral to calculate. The second derivation uses the Laplace transform and ...We describe two new derivations of the chi-square distribution. The first derivation uses the induction method, which requires only a single integral to calculate. The second derivation uses the Laplace transform and requires minimum assumptions. The new derivations are compared with the established derivations, such as by convolution, moment generating function, and Bayesian inference. The chi-square testing has seen many applications to physics and other fields. We describe a unique version of the chi-square test where both the variance and location are tested, which is then applied to environmental data. The chi-square test is used to make a judgment whether a laboratory method is capable of detection of gross alpha and beta radioactivity in drinking water for regulatory monitoring to protect health of population. A case of a failure of the chi-square test and its amelioration are described. The chi-square test is compared to and supplemented by the t-test.展开更多
Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-v...Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.展开更多
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct ...Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.展开更多
文摘We describe two new derivations of the chi-square distribution. The first derivation uses the induction method, which requires only a single integral to calculate. The second derivation uses the Laplace transform and requires minimum assumptions. The new derivations are compared with the established derivations, such as by convolution, moment generating function, and Bayesian inference. The chi-square testing has seen many applications to physics and other fields. We describe a unique version of the chi-square test where both the variance and location are tested, which is then applied to environmental data. The chi-square test is used to make a judgment whether a laboratory method is capable of detection of gross alpha and beta radioactivity in drinking water for regulatory monitoring to protect health of population. A case of a failure of the chi-square test and its amelioration are described. The chi-square test is compared to and supplemented by the t-test.
文摘Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.
文摘Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.