An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this pap...An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.展开更多
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:...In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.展开更多
In a cloud environment,consumers search for the best service provider that accomplishes the required tasks based on a set of criteria such as completion time and cost.On the other hand,Cloud Service Providers(CSPs)see...In a cloud environment,consumers search for the best service provider that accomplishes the required tasks based on a set of criteria such as completion time and cost.On the other hand,Cloud Service Providers(CSPs)seek to maximize their profits by attracting and serving more consumers based on their resource capabilities.The literature has discussed the problem by considering either consumers’needs or CSPs’capabilities.A problem resides in the lack of explicit models that combine preferences of consumers with the capabilities of CSPs to provide a unified process for resource allocation and task scheduling in a more efficient way.The paper proposes a model that adopts a Multi-Criteria Decision Making(MCDM)method,called Analytic Hierarchy Process(AHP),to acquire the information of consumers’preferences and service providers’capabilities to prioritize both tasks and resources.The model also provides a matching technique to assign each task to the best resource of a CSP while preserves the fairness of scheduling more tasks for resources with higher capabilities.Our experimental results prove the feasibility of the proposed model for prioritizing hundreds of tasks/services and CSPs based on a defined set of criteria,and matching each set of tasks/services to the best CSPS.展开更多
Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory...Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.展开更多
In today’s world, Cloud Computing (CC) enables the users to accesscomputing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, l...In today’s world, Cloud Computing (CC) enables the users to accesscomputing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, located inremote locations, is integrated to perform operations like data collection, processing, data profiling and data storage. In this context, resource allocation and taskscheduling are important processes which must be managed based on the requirements of a user. In order to allocate the resources effectively, hybrid cloud isemployed since it is a capable solution to process large-scale consumer applications in a pay-by-use manner. Hence, the model is to be designed as a profit-driven framework to reduce cost and make span. With this motivation, the currentresearch work develops a Cost-Effective Optimal Task Scheduling Model(CEOTS). A novel algorithm called Target-based Cost Derivation (TCD) modelis used in the proposed work for hybrid clouds. Moreover, the algorithm workson the basis of multi-intentional task completion process with optimal resourceallocation. The model was successfully simulated to validate its effectivenessbased on factors such as processing time, make span and efficient utilization ofvirtual machines. The results infer that the proposed model outperformed theexisting works and can be relied in future for real-time applications.展开更多
基金Supported by the key project of science and technology plan in the Guangxi Zhuang Autonomous Region China(0630005-8)
文摘An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.
文摘In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.
文摘In a cloud environment,consumers search for the best service provider that accomplishes the required tasks based on a set of criteria such as completion time and cost.On the other hand,Cloud Service Providers(CSPs)seek to maximize their profits by attracting and serving more consumers based on their resource capabilities.The literature has discussed the problem by considering either consumers’needs or CSPs’capabilities.A problem resides in the lack of explicit models that combine preferences of consumers with the capabilities of CSPs to provide a unified process for resource allocation and task scheduling in a more efficient way.The paper proposes a model that adopts a Multi-Criteria Decision Making(MCDM)method,called Analytic Hierarchy Process(AHP),to acquire the information of consumers’preferences and service providers’capabilities to prioritize both tasks and resources.The model also provides a matching technique to assign each task to the best resource of a CSP while preserves the fairness of scheduling more tasks for resources with higher capabilities.Our experimental results prove the feasibility of the proposed model for prioritizing hundreds of tasks/services and CSPs based on a defined set of criteria,and matching each set of tasks/services to the best CSPS.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2011CB302506Important National Science & Technology Specific Projects: Next-Generation Broadband Wireless Mobile Communications Network under Grant No.2011ZX03002-001-01Innovative Research Groups of the National Natural Science Foundation of China under Grant No.60821001
文摘Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.
文摘In today’s world, Cloud Computing (CC) enables the users to accesscomputing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, located inremote locations, is integrated to perform operations like data collection, processing, data profiling and data storage. In this context, resource allocation and taskscheduling are important processes which must be managed based on the requirements of a user. In order to allocate the resources effectively, hybrid cloud isemployed since it is a capable solution to process large-scale consumer applications in a pay-by-use manner. Hence, the model is to be designed as a profit-driven framework to reduce cost and make span. With this motivation, the currentresearch work develops a Cost-Effective Optimal Task Scheduling Model(CEOTS). A novel algorithm called Target-based Cost Derivation (TCD) modelis used in the proposed work for hybrid clouds. Moreover, the algorithm workson the basis of multi-intentional task completion process with optimal resourceallocation. The model was successfully simulated to validate its effectivenessbased on factors such as processing time, make span and efficient utilization ofvirtual machines. The results infer that the proposed model outperformed theexisting works and can be relied in future for real-time applications.