Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
In ths paper. a new nonlinear formulation of plates. including shear and rotatory inertia and transverse normal stress effects, is developed by means of general assumptions, of which the von Karman-type formulation an...In ths paper. a new nonlinear formulation of plates. including shear and rotatory inertia and transverse normal stress effects, is developed by means of general assumptions, of which the von Karman-type formulation and some thick plate theories are special cases. To keep the formulation fairly general, the problem addressed in this paper simultaneously includes: the effects of shear deformation according to the geometric deformation similarity of the crosssection, the rotatory inertia, and the transverse normal stress. The three-dimensional compatible equations are applied to derive the basic equations. Numerical results are given for linear and non-linear analysis of plates.展开更多
The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction betw...The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers,which is a potential threat to marine risers.In this paper,the flow field of ISWs is obtained with the Korteweg-de Vries(Kd V)equation for a two-layer fluid system.Then,a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs.The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method.The applicable conditions of the theoretical expressions are discussed.Through comparisons with the finite element simulations for nonlinear dynamic responses,it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent.展开更多
This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue p...This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue problem but also in the calculation of the dynamic response. The analytical approaches for undamped gyroscopic system, non-classically damped system, including the damped gyroscopic system were unified. Very interesting and useful theoretical results, practical algorithms were obtained which are applicable to both non-defective and defective systems.展开更多
Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearin...Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical...The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to conti...In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.展开更多
The dynamical processes of a typical linear dune including morphological features, dune ridge swing range and crest height were investigated at different monitoring periods in the hinterland of Tengger Desert. The res...The dynamical processes of a typical linear dune including morphological features, dune ridge swing range and crest height were investigated at different monitoring periods in the hinterland of Tengger Desert. The results indicated that the development of linear dune depends on not only the northwesterly prevailing wind, but also the winds from northeast and southwest. The dune ridge swayed along its fundamental strike and took on an eastward movement gradually. The original dune strike was NW70° on August 3, 1994, and then changed to NE15° on April 21, 2001. The dune crest increased by 1.8 m longitudinally, which manifested strong wind-blown sand activities in this region. Wind erosion frequently occured at the bottom of sand dune, while sand accumulation appeared on its mid-upper section. The mean wind erosion depth was 25 cm on the bottom of linear dune and the height difference of the control points on the dune’s ridge was 1.13 m. Although the linear dune swayed laterally, the horizontal displacement of its ridge moved eastward 5.8 m averagely. The swing range of the dune crest line is very distinct, with a maximum value of 13.2 m. The highest site on the K-profile swayed on both sides of the dune ridge and the heights were 19.88 m at the control point K5, 19.61 m at K6 and 19.05 m at K7, respectively. The results indicated that the lateral swing of the linear dune was distinct under the northwesterly wind and it moved toward east gradually.展开更多
Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response ...Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.展开更多
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corres...This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).展开更多
A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc fr...A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc from x to y if y=f(x).Let L be a finite distributive lattice,A an n×n matrix over L,and f(x)=Ax.The structure of the phase space of the FDS(Ln,f)is discussed.The number of limit cycles in the phase space of(Ln,f)is described in Möbius function.The phase spaces of some invertible,nilpotent,and idempotent FDS(Ln,f)are characterized explicitly.展开更多
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engin...Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.展开更多
Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in t...Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in this special issue discussed the historical background,展开更多
This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equili...This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.展开更多
Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily...Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.展开更多
Discusses the stability of adaptive control using dynamic linearization and gives the sufficient condition for the stability of the closed loop system under the action of the adaptive control by using the small gain t...Discusses the stability of adaptive control using dynamic linearization and gives the sufficient condition for the stability of the closed loop system under the action of the adaptive control by using the small gain theory.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
文摘In ths paper. a new nonlinear formulation of plates. including shear and rotatory inertia and transverse normal stress effects, is developed by means of general assumptions, of which the von Karman-type formulation and some thick plate theories are special cases. To keep the formulation fairly general, the problem addressed in this paper simultaneously includes: the effects of shear deformation according to the geometric deformation similarity of the crosssection, the rotatory inertia, and the transverse normal stress. The three-dimensional compatible equations are applied to derive the basic equations. Numerical results are given for linear and non-linear analysis of plates.
基金Project supported by the National Natural Science Foundation of China(Nos.12132018,11972352,12202455)the Strategic Priority Research Program of the Chinese Academy of Sciences of China(No.XDA22000000)。
文摘The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers,which is a potential threat to marine risers.In this paper,the flow field of ISWs is obtained with the Korteweg-de Vries(Kd V)equation for a two-layer fluid system.Then,a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs.The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method.The applicable conditions of the theoretical expressions are discussed.Through comparisons with the finite element simulations for nonlinear dynamic responses,it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent.
基金the National Science Foundation of Chinathe Doctoral Training of Education Committee of China
文摘This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue problem but also in the calculation of the dynamic response. The analytical approaches for undamped gyroscopic system, non-classically damped system, including the damped gyroscopic system were unified. Very interesting and useful theoretical results, practical algorithms were obtained which are applicable to both non-defective and defective systems.
基金National Basic Research Program of China (973 Program,No.2003CB716206)National Natural Science Foundation of China (No.50605025)
文摘Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
文摘The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
文摘In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.
基金supported by the National Key Basic Research Development Program of China (2009BAC54B01-1)National Natural Science Foundation of China (41071009 and 40701171)
文摘The dynamical processes of a typical linear dune including morphological features, dune ridge swing range and crest height were investigated at different monitoring periods in the hinterland of Tengger Desert. The results indicated that the development of linear dune depends on not only the northwesterly prevailing wind, but also the winds from northeast and southwest. The dune ridge swayed along its fundamental strike and took on an eastward movement gradually. The original dune strike was NW70° on August 3, 1994, and then changed to NE15° on April 21, 2001. The dune crest increased by 1.8 m longitudinally, which manifested strong wind-blown sand activities in this region. Wind erosion frequently occured at the bottom of sand dune, while sand accumulation appeared on its mid-upper section. The mean wind erosion depth was 25 cm on the bottom of linear dune and the height difference of the control points on the dune’s ridge was 1.13 m. Although the linear dune swayed laterally, the horizontal displacement of its ridge moved eastward 5.8 m averagely. The swing range of the dune crest line is very distinct, with a maximum value of 13.2 m. The highest site on the K-profile swayed on both sides of the dune ridge and the heights were 19.88 m at the control point K5, 19.61 m at K6 and 19.05 m at K7, respectively. The results indicated that the lateral swing of the linear dune was distinct under the northwesterly wind and it moved toward east gradually.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)the National Natural Science Foundation of China(Grant No.61903013)。
文摘Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
文摘This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).
基金National Natural Science Foundation of China(Nos.11671258 and 11371086)。
文摘A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc from x to y if y=f(x).Let L be a finite distributive lattice,A an n×n matrix over L,and f(x)=Ax.The structure of the phase space of the FDS(Ln,f)is discussed.The number of limit cycles in the phase space of(Ln,f)is described in Möbius function.The phase spaces of some invertible,nilpotent,and idempotent FDS(Ln,f)are characterized explicitly.
基金supported by National Natural Science Foundation of China (Grant No. 60879002)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA110112)
文摘Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao(XNB201507)
文摘Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in this special issue discussed the historical background,
基金Supported by the National Science Foundation of China(60274056)
文摘This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.
文摘Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.
文摘Discusses the stability of adaptive control using dynamic linearization and gives the sufficient condition for the stability of the closed loop system under the action of the adaptive control by using the small gain theory.