Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/subs...Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.展开更多
We studied the hydrogenation of 2‐ethylanthraquinone(eAQ) over Pd/SiO2/COR(COR = cordierite) monometallic and Pd‐M/SiO2/COR(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts, which were prepared by the c...We studied the hydrogenation of 2‐ethylanthraquinone(eAQ) over Pd/SiO2/COR(COR = cordierite) monometallic and Pd‐M/SiO2/COR(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts, which were prepared by the co‐impregnation method. Detailed investigations showed that the particle sizes and structures of the Pd‐M(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts were great‐ly affected by the second metal M and the mass ratio of Pd to the second metal M. By virtue of the small particle size and the strong interaction between Pd and Ni of Pd‐Ni alloy, Pd‐Ni bimetallic monolithic catalysts with the mass ratio of Pd/Ni = 2 achieved the highest H2O2 yield(7.5 g/L) and selectivity(95.3%). Moreover, density functional theory calculations were performed for eAQ ad‐sorption to gain a better mechanistic understanding of the molecule‐surface interactions between eAQ and the Pd(1 1 1) or PdM(1 1 1)(M = Ni, Fe, Mn, and Cu) surfaces. It was found that the high activity of the bimetallic Pd‐Ni catalyst was a result of strong chemisorption between Pd3Ni1(1 1 1) and the carbonyl group of eAQ.展开更多
A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer ...A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.展开更多
Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a h...Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.展开更多
In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite sa...In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite samples were characterized by means of X-ray diffraction(XRD),N_2 adsorption/desorption isotherms,and scanning electron microscope(SEM).The cleavage of cumene hydroperoxide(CHP) in a conventional fixed-bed reactor was chosen as a model reaction to evaluate the catalytic activity of the monolithic catalysts.The influences of acidic montmorillonite loading,reaction temperature.CHP concentration,and weight hourly space velocity(WHSV) on the catalytic activity and selectivity of phenol were studied.The results indicated that the obtained acidic montmorillonite/cordierite monolithic catalysts were firm and compact,and the loading of acidic montmorillonite was found to reach 40%(by mass) after three coating operations.The surface area of acidic montmorillonite/cordierite catalysts increases greatly as acidic montmorillonite loading increases due to higher surface area of acidic montmorillonite.Under the optimal reaction conditions(acidic montmorillonite loading of 32.5%(by mass),temperature of 80 ℃,a mass ratio of CHP to acetone of 1:3,and WHSV of CHP of 90 h^(-1)),the conversion of CHP can reach 100%,and the selectivity of phenol is up to 99.8%.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM...A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.展开更多
Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the...Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.展开更多
Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal lo...Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.展开更多
A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion w...A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion was evaluated in a continuous flow microreactor. The results indicated that the active washcoats adhered well on the FeCrAl foils. The phases in the catalysts were Co--xMgxO solid solutions, α-Al2O3, and γ-Al2O3. The surface particle size of the catalysts varied with variations in the molar ratios of Co to Mg. The Co component of the Co1_xMgxO/Al2O3/FeCrAl catalysts played an important role in the catalytic activity for methane combustion. In the Co1-xMgxO/AluO3/FeCrAl series catalyst (x=0.2-0.8), the catalytic activity in terms of x was in the order of 0.5〉0.2〉0.8 under the experimental conditions. The presence of Mg in these catalysts could promote the thermal stability to a large extent. There were strong interactions between the Co1-xMgxO oxides and the AluO3/FeCrAl supports.展开更多
This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five...This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop.展开更多
Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed...Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.展开更多
A series of B-Ni2P/SBA-15/cord monolithic catalysts were prepared by coating the slurry of the B-Ni2P/SBA-15 precursors on a pretreated cordierite support, and followed by temperature-programmed reduction in a H2 flow...A series of B-Ni2P/SBA-15/cord monolithic catalysts were prepared by coating the slurry of the B-Ni2P/SBA-15 precursors on a pretreated cordierite support, and followed by temperature-programmed reduction in a H2 flow. The samples were characterized by X-ray diffraction (XRD) and N2 adsorption-desorption technique. The catalytic activities for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) were evaluated. The results showed that Ni2P phase was present in all B-Ni2P/SBA-1 5/cord monolithic catalysts. The specific surface areas (SBET) of the B-Ni2P/SBA-15/cord monolithic catalysts was first increased to 167 m2· g-1, and then decreased to 155 m2· g-1 with the increase of boron contents. The catalytic activity also showed the similar trend with the increase of boron contents. The 1.75% (by mass) B-Ni2P/SBA-15/cord monolithic catalysts exhibited the highest DBT conversion of 98.4% at 380 ℃. The cordierite-based monolithic catalysts showed better low temperature sensitivity for HDS of DBT in comparison with the particle catalysts. Moreover, two HDS routes, direct desulfurization (DDS) and hydrogenation (HYD), proceeded independently over B-Ni2P/SBA-15/cord monolithic catalysts and the main pathway was DDS.展开更多
Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed ...Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.展开更多
A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was establ...A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).展开更多
Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(...Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(Co-NWs)in situ grown on monolithic Ni foam substrates to support Ag catalysts(Ag/Co-NW-R)for soot combustion.The macroporous structure of Ni foam with crossed Co_(3)O_(4)nanowires remarkably increases the soot-catalyst contact effi ciency.Our characterization results demonstrate that Ag species exist as Ag 0 because of the equation Ag^(+)+Co^(2+)=Ag^(0)+Co^(3+),and the pre-reduction treatment enhances interactions between Ag and Co_(3)O_(4).The number of active oxygen species on the Ag-loaded catalysts is approximately twice that on the supports,demonstrating the signifi cant role of Ag sites in generating active oxygen species.Additionally,the strengthened MSI on Ag/Co-NW-R further improves this number by increasing metal dispersion and the intrinsic activity determined by the turnover frequency of these oxygen species for soot oxidation compared with the catalyst without pre-reduction of Co-NW(Ag/Co-NW).In addition to high activity,Ag/Co-NW-R exhibits high catalytic stability and water resistance.The strategy used in this work might be applicable in related catalytic systems.展开更多
This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH...This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.展开更多
A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was ...A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).展开更多
A series of monolithic Ni/CeO_2-ZrO_2/γ-Al_2O_3 catalysts for the POM reaction were prepared. The activity test shows that the catalyst has the best performance when CeO_2-ZrO_2 content is 8 wt%.The synergistic actio...A series of monolithic Ni/CeO_2-ZrO_2/γ-Al_2O_3 catalysts for the POM reaction were prepared. The activity test shows that the catalyst has the best performance when CeO_2-ZrO_2 content is 8 wt%.The synergistic actions between CeO_2-ZrO_2 and γ-Al_2O_3 improve highly catalytic activity by increasing CH_4 conversion, H_2 and CO selectivity. XPS analysis of the used catalyst indicates that there coexist Ce^(4+) and Ce^(3+).展开更多
A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic pr...A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic properties during the 120 hours operation at atmospheric pressure were found for the catalyst. Under the high space velocity of 9.0×104l/(kg·(h)(CH4), the conversion of methane came to 95.5%, and the selectivity of carbon monoxide was not below 96.0% at 1123K when ratio of the feedstock (CH4/O2) was equal to 2.0.展开更多
基金Project supported by Zhejiang Provincial Natural Science Foundation of China (203147)the National Natural Science Foundation of China (20473075)
文摘Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.
基金supported by the National Natural Science Foundation of China (21476009, 21406007, U1462104)~~
文摘We studied the hydrogenation of 2‐ethylanthraquinone(eAQ) over Pd/SiO2/COR(COR = cordierite) monometallic and Pd‐M/SiO2/COR(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts, which were prepared by the co‐impregnation method. Detailed investigations showed that the particle sizes and structures of the Pd‐M(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts were great‐ly affected by the second metal M and the mass ratio of Pd to the second metal M. By virtue of the small particle size and the strong interaction between Pd and Ni of Pd‐Ni alloy, Pd‐Ni bimetallic monolithic catalysts with the mass ratio of Pd/Ni = 2 achieved the highest H2O2 yield(7.5 g/L) and selectivity(95.3%). Moreover, density functional theory calculations were performed for eAQ ad‐sorption to gain a better mechanistic understanding of the molecule‐surface interactions between eAQ and the Pd(1 1 1) or PdM(1 1 1)(M = Ni, Fe, Mn, and Cu) surfaces. It was found that the high activity of the bimetallic Pd‐Ni catalyst was a result of strong chemisorption between Pd3Ni1(1 1 1) and the carbonyl group of eAQ.
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)
文摘A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.
文摘Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.
基金Supported by the National Natural Science Foundation of China(21121064,21076008,21206008)the Projects in the National Science&Technology Pillar Program during the 12th Five-Year Plan Period(2011BAC06B04)the Research Fund for the Doctoral Program of Higher Education of China(20120010110002)
文摘In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite samples were characterized by means of X-ray diffraction(XRD),N_2 adsorption/desorption isotherms,and scanning electron microscope(SEM).The cleavage of cumene hydroperoxide(CHP) in a conventional fixed-bed reactor was chosen as a model reaction to evaluate the catalytic activity of the monolithic catalysts.The influences of acidic montmorillonite loading,reaction temperature.CHP concentration,and weight hourly space velocity(WHSV) on the catalytic activity and selectivity of phenol were studied.The results indicated that the obtained acidic montmorillonite/cordierite monolithic catalysts were firm and compact,and the loading of acidic montmorillonite was found to reach 40%(by mass) after three coating operations.The surface area of acidic montmorillonite/cordierite catalysts increases greatly as acidic montmorillonite loading increases due to higher surface area of acidic montmorillonite.Under the optimal reaction conditions(acidic montmorillonite loading of 32.5%(by mass),temperature of 80 ℃,a mass ratio of CHP to acetone of 1:3,and WHSV of CHP of 90 h^(-1)),the conversion of CHP can reach 100%,and the selectivity of phenol is up to 99.8%.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
基金supported by the National Basic Research Program of China(Project No. 2005CB221405)
文摘A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.
文摘Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.
基金Project supported by the National Natural Science Key Foundation of China (20333030)
文摘Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.
基金Financial funds from the Chinese Natural Science Foundation (Project No.: 20376005) the Specialized Research Fund for the Doctoral Program of Higher Education (Project No.: 20030010002) are gratefully acknowledged.
文摘A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion was evaluated in a continuous flow microreactor. The results indicated that the active washcoats adhered well on the FeCrAl foils. The phases in the catalysts were Co--xMgxO solid solutions, α-Al2O3, and γ-Al2O3. The surface particle size of the catalysts varied with variations in the molar ratios of Co to Mg. The Co component of the Co1_xMgxO/Al2O3/FeCrAl catalysts played an important role in the catalytic activity for methane combustion. In the Co1-xMgxO/AluO3/FeCrAl series catalyst (x=0.2-0.8), the catalytic activity in terms of x was in the order of 0.5〉0.2〉0.8 under the experimental conditions. The presence of Mg in these catalysts could promote the thermal stability to a large extent. There were strong interactions between the Co1-xMgxO oxides and the AluO3/FeCrAl supports.
基金Supported by the National Natural Science Foundation of China (21121064, 21076008) the Projects in the National Science & Technology Pillar Program During the 12th Five-Year Plan Period (2011BAC06B04)
文摘This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop.
基金Supported by the Sinopec Corp.Scientific Research Projects(414076)
文摘Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.
基金Supported by the National Basic Research Program of China(2006CB202503)the Science Foundation of PetroChina(2010D-5006-0401)
文摘A series of B-Ni2P/SBA-15/cord monolithic catalysts were prepared by coating the slurry of the B-Ni2P/SBA-15 precursors on a pretreated cordierite support, and followed by temperature-programmed reduction in a H2 flow. The samples were characterized by X-ray diffraction (XRD) and N2 adsorption-desorption technique. The catalytic activities for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) were evaluated. The results showed that Ni2P phase was present in all B-Ni2P/SBA-1 5/cord monolithic catalysts. The specific surface areas (SBET) of the B-Ni2P/SBA-15/cord monolithic catalysts was first increased to 167 m2· g-1, and then decreased to 155 m2· g-1 with the increase of boron contents. The catalytic activity also showed the similar trend with the increase of boron contents. The 1.75% (by mass) B-Ni2P/SBA-15/cord monolithic catalysts exhibited the highest DBT conversion of 98.4% at 380 ℃. The cordierite-based monolithic catalysts showed better low temperature sensitivity for HDS of DBT in comparison with the particle catalysts. Moreover, two HDS routes, direct desulfurization (DDS) and hydrogenation (HYD), proceeded independently over B-Ni2P/SBA-15/cord monolithic catalysts and the main pathway was DDS.
基金supported by the National Natural Science Foundation of China(22022802 and 91934303).
文摘Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.
基金Supported by the National Basic Research Program of China(2005CB221405)
文摘A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).
基金supported by the National Natu-ral Science Foundation of China(Nos.21878213,21808211)the open foundation of the State Key Laboratory of Chemical Engineer-ing(SKL-ChE-20B01)Authors are also grateful to the Program of Introducing Talents of Disciplines to China Universities(BP0618007).
文摘Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(Co-NWs)in situ grown on monolithic Ni foam substrates to support Ag catalysts(Ag/Co-NW-R)for soot combustion.The macroporous structure of Ni foam with crossed Co_(3)O_(4)nanowires remarkably increases the soot-catalyst contact effi ciency.Our characterization results demonstrate that Ag species exist as Ag 0 because of the equation Ag^(+)+Co^(2+)=Ag^(0)+Co^(3+),and the pre-reduction treatment enhances interactions between Ag and Co_(3)O_(4).The number of active oxygen species on the Ag-loaded catalysts is approximately twice that on the supports,demonstrating the signifi cant role of Ag sites in generating active oxygen species.Additionally,the strengthened MSI on Ag/Co-NW-R further improves this number by increasing metal dispersion and the intrinsic activity determined by the turnover frequency of these oxygen species for soot oxidation compared with the catalyst without pre-reduction of Co-NW(Ag/Co-NW).In addition to high activity,Ag/Co-NW-R exhibits high catalytic stability and water resistance.The strategy used in this work might be applicable in related catalytic systems.
基金supported by the greenhouse gas mitigation technology development program"Technology Developments on Hydrogen Production from Biomass and Waste"organized by the National Institute for Environmental Studies(NIES)for 2002~2008 in trust from the Ministry of the Environment(MOE)
文摘This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.
基金Project supported by Zhejiang Provincial Nature Science Foundation of China (203147)the National Natural ScienceFoundation of China (20473075)
文摘A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).
文摘A series of monolithic Ni/CeO_2-ZrO_2/γ-Al_2O_3 catalysts for the POM reaction were prepared. The activity test shows that the catalyst has the best performance when CeO_2-ZrO_2 content is 8 wt%.The synergistic actions between CeO_2-ZrO_2 and γ-Al_2O_3 improve highly catalytic activity by increasing CH_4 conversion, H_2 and CO selectivity. XPS analysis of the used catalyst indicates that there coexist Ce^(4+) and Ce^(3+).
基金the National Advanced Materials Committee of China (Grant No. 715-006-0122) and the Ministry of Science and Technology, China (
文摘A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic properties during the 120 hours operation at atmospheric pressure were found for the catalyst. Under the high space velocity of 9.0×104l/(kg·(h)(CH4), the conversion of methane came to 95.5%, and the selectivity of carbon monoxide was not below 96.0% at 1123K when ratio of the feedstock (CH4/O2) was equal to 2.0.