Aimed at the large deformation problem of industry cooling tower shell, the mathematical model for the random response of rotational shell under the external random excitation is established by statistic perturbation ...Aimed at the large deformation problem of industry cooling tower shell, the mathematical model for the random response of rotational shell under the external random excitation is established by statistic perturbation method. The effect of nonlinear geometric behavior on the response of rotational shell is analyzed.展开更多
Copper is susceptible to producing corrosion problems in corrosive environments, which leads to serious safety problems. Thus, investigating the corrosion behavior of copper is of great significance. The effects of ro...Copper is susceptible to producing corrosion problems in corrosive environments, which leads to serious safety problems. Thus, investigating the corrosion behavior of copper is of great significance. The effects of rotating electromagnetic field on corrosion behavior of T2 copper in 3.5% sodium chloride solution with electrochemical measurements were investigated. The results showed that rotating electromagnetic field changed properties of 3.5% sodium chloride solution by increasing the values of temperature and pH and decreasing the values of conductivity and dissolved oxygen. The rotating electromagnetic field improved the corrosion resistance of T2 copper. The corrosion products of T2 copper in treated 3.5% sodium chloride solution were composed of Cu20 and CuCl. The low corrosion rate of T2 copper was resulted from the decrease of dissolved oxygen in 3.5% sodium chloride solution treated by rotating electromagnetic field.展开更多
Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong w...Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong wind loads, the statistic perturbation method is also used to analyze some statistic characteristics of the nonlinear random response of rotational shell with geometric nonlinearity and stationary strong wind load considered. Through computation, some average values of nornal displacements and the nonlinear effect factor of the cooling tower shell are given.展开更多
In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of t...In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
With a rotating cylinder electrode apparatus, the polarization behaviors of the mild steel and the stainless steel 0Cr18Ni9 in NaHCO 3 (0.5 M)+Na 2CO 3 (0.5 M) solution with and without erodent particles were inves...With a rotating cylinder electrode apparatus, the polarization behaviors of the mild steel and the stainless steel 0Cr18Ni9 in NaHCO 3 (0.5 M)+Na 2CO 3 (0.5 M) solution with and without erodent particles were investigated and compared. The results show that the rotation speed of cylinder hardly affects the polarization behavior of sample in solution without particles but exerts a great influence on that with particles. Increasing rotation speed, the free corrosion potential shifts to positive direction and the oxygen limiting current density increases. Both the mild steel and stainless steel 0Cr18Ni9 experience a significant increase of the mass loss by increasing erosion, and erosive wear was dominated by severe micro-plowing. The insufficient mechanical strength of both materials leads to a low resistance to particle removal. Increasing peripheral velocities of the rotating cylinder enhances the corrosion rate of the mild steel. The stainless steel 0Cr18Ni9, due to a high erosive wear, also suffers from similar erosion-corrosion damage, despite that its corrosion resistance is much higher than that of the mild steel.展开更多
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas ...In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.展开更多
Mental rotation(MR)is an important aspect of cognitive processing in gaming since transformation andmanipulation of visuospatial information are necessary in order to execute a gaming task.This study provides insights...Mental rotation(MR)is an important aspect of cognitive processing in gaming since transformation andmanipulation of visuospatial information are necessary in order to execute a gaming task.This study provides insights on saccadic characteristics in gaming task performance that involves 2D and 3D isomorphic objects with varying angular disparity.Healthy participants(N=60)performedMR gaming task.Each participantwas tested individually in an acoustic treated lab environment.Gaze behavior data of all participants were recorded during task execution and analyzed to find the changes in spatiotemporal characteristics of saccades associated with the variation in angular disparity and dimensionality.There were four groups with unique combination of angular disparity and dimensionality,each with fifteen participants randomly assigned.Results indicate that the spatial characteristics of the object affect the temporal aspect of saccade(duration),whereas the spatial aspect of the saccade(amplitude)is influenced by the objects’dimension.A longer saccade duration indicates a prolonged suppression of spatial information processing during the MR tasks with objects at convex range angular disparities.Therefore,the MR tasks with convex angular disparity become more complex to process compared to the tasks with reflex angular disparity.MR process is faster and more accurate with 3D objects compared to the 2D objects.There is an interaction between angular disparity and dimensionality in terms of mental demand,such that theMR processing with 2Dobjects in reflex angular disparitywasmoremental demanding than that of convex angular disparity;however,this trend was absent in case of 3Dobjects.Hence,during the MR task,the longer saccade duration implies that the taskswith convex angular disparities become comparativelymore challenging.Also,the lower saccadic amplitude for 2D objects indicates difficulties in processing due to deficient visual features.The findings could help in framing the computer-based game(or videogame)concerningMRabilities for training or rehabilitation purposes.展开更多
This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology ...This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.展开更多
A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate...A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate cyclically with the magnitudes of the principal stresses keeping constant. The anisotropy of the reconstituted clay is analyzed from the monotonic shearing tests. Obvious pore pressure is induced by the principal stress rotation alone even with shear stress q0=5 k Pa. Strain components also accumulate with increasing the number of cycles and increases suddenly at the onset of failure. The deviatoric shear strain of 7.5% can be taken as the failure criterion for clay subjected to the pure cyclic principal stress rotation. The intermediate principal stress parameter b plays a significant role in the development of pore pressure and strain. Specimens are weakened by cyclic rotational shearing as the shear modulus decreases with increasing the number of cycles, and the shear modulus reduces more quickly with larger b. Clear deviation between the directions of the principal plastic strain increment and the principal stress is observed during pure principal stress rotation. Both the coaxial and non-coaxial plastic mechanisms should be taken into consideration to simulate the deformation behavior of clay under pure principal stress rotation. The mechanism of the soil response to the pure principal stress rotation is discussed based on the experimental observations.展开更多
General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structur...General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structures have diverse variables, studies to assess behaviors resulting from various variables are continuously required to supplement the imperfections related to such variables. In the present study, materials elastic modulus and yield strength were selected as variables for strength that would be applied to diagrid structural systems in the form of Twisters among the irregular shaped buildings classified by Vollers and that affect the structural design of these structural systems. The purpose of this study is to conduct sensitivity analysis for axial rotation diagrid structural systems according to changes in brace angles in order to identify the design variables that have relatively larger effects and the tendencies of the sensitivity of the structures according to changes in brace angles and axial rotation angles.展开更多
We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of...We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.展开更多
Staircase is an important means of vertical transportation. Staircase design exerts a great influence on the aesthetics, transportation efficiency, user comfort and experience level. In this paper, a survey on the sta...Staircase is an important means of vertical transportation. Staircase design exerts a great influence on the aesthetics, transportation efficiency, user comfort and experience level. In this paper, a survey on the staircase rotation preference was conducted, based on the environment behavior studies. Different user frequencies of a pair of scissors stairs in the 2nd teaching building of North China University of Technology were analyzed. The psychological effect was evaluated and quantified, and the user preference on the two staircase rotations was then withdrawn. The survey found that the type of staircase with clockwise upstairs was much more preferred (78%) than the other staircase rotation anti-clock upstairs. Considering different genders, the female shows a 66% higher preference inclination of this type of staircase rotation than the male. To improve the transportation efficiency of the staircase in case of fire, the result of this paper can be very constructive for the evacuation staircase rotation choice for the high-rise buildings.展开更多
Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the u...Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the user are interested in the results of PD measurements. However, PDs hardly represent the cause of the failure, more likely they are claimed as the outcome of a failure. This paper deals with the insulation of a 6 kV electrical machine, whereas PD measurements were carried out at a single stator from wound coils. During manufacturing, these coils were equipped with different materials for the OCP (outer corona protection). Using different PD measurement systems and different bandwidths, investigations of the PD behavior of the coils were carried out. Additionally, the surface resistivity of the corona protection was determined. As a result, conclusions for the correlations between the resistance of the OCP as well as the PD behavior are stated. Furthermore, the influence of using different measurement systems, different measuring circuits, and different bandwidths is shown.展开更多
Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear c...Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear characteristics and nonlinear behavior of the medium-to long-term shoreline evolution of Jinghai Bay,eastern Guangdong Province.In particular,shoreline rotation caused by a shore-normal coastal structure is emphasized.The results show that the overall shoreline evolution over the past 30 years is characterized by erosion on the southwest beach,with an average erosion rate of 3.1 m/a,and significant accretion on the northeast beach,with an average accretion rate of 5.6 m/a.Results of the M–K trend test indicate that significant shoreline changes occurred in early 2006,which can be attributed to shore-normal engineering.Prior to that engineering construction,the shorelines are slightly eroded,where the average erosion rate is 0.7 m/a.However,after shore-normal engineering is performed,the shoreline is characterized by significant erosion(3.2 m/a)on the southwest beach and significant accretion(8.5 m/a)on the northeast beach,thus indicating that the shore-normal engineering at the updrift headland contributes to clockwise shoreline rotation.Further analysis shows that the clockwise shoreline rotation is promoted not only by longshore sediment transport processes from southwest to northeast,but also by cross-shore sediment transport processes.These findings are crucial for beach erosion risk management,coastal disaster zoning,regional sediment budget assessments,and further observations and predictions of beach morphodynamics.展开更多
文摘Aimed at the large deformation problem of industry cooling tower shell, the mathematical model for the random response of rotational shell under the external random excitation is established by statistic perturbation method. The effect of nonlinear geometric behavior on the response of rotational shell is analyzed.
基金Projects(51207031,51177022)supported by the National Natural Science Foundation of ChinaProject(2013M541368)supported by the China Postdoctoral Science Foundation+1 种基金Project(BS2011NJ002)supported by the Promotive Research Fund for Excellent Young and Middle-Aged Scientists of Shandong Province,ChinaProject(2008DFR60340)supported by the International Science and Technology Cooperation of China
文摘Copper is susceptible to producing corrosion problems in corrosive environments, which leads to serious safety problems. Thus, investigating the corrosion behavior of copper is of great significance. The effects of rotating electromagnetic field on corrosion behavior of T2 copper in 3.5% sodium chloride solution with electrochemical measurements were investigated. The results showed that rotating electromagnetic field changed properties of 3.5% sodium chloride solution by increasing the values of temperature and pH and decreasing the values of conductivity and dissolved oxygen. The rotating electromagnetic field improved the corrosion resistance of T2 copper. The corrosion products of T2 copper in treated 3.5% sodium chloride solution were composed of Cu20 and CuCl. The low corrosion rate of T2 copper was resulted from the decrease of dissolved oxygen in 3.5% sodium chloride solution treated by rotating electromagnetic field.
文摘Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong wind loads, the statistic perturbation method is also used to analyze some statistic characteristics of the nonlinear random response of rotational shell with geometric nonlinearity and stationary strong wind load considered. Through computation, some average values of nornal displacements and the nonlinear effect factor of the cooling tower shell are given.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(No.51827901&No.52274133)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)the Shenzhen National Science Fund for Distinguished Young Scholars(RCJC20210706091948015).
文摘In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
文摘With a rotating cylinder electrode apparatus, the polarization behaviors of the mild steel and the stainless steel 0Cr18Ni9 in NaHCO 3 (0.5 M)+Na 2CO 3 (0.5 M) solution with and without erodent particles were investigated and compared. The results show that the rotation speed of cylinder hardly affects the polarization behavior of sample in solution without particles but exerts a great influence on that with particles. Increasing rotation speed, the free corrosion potential shifts to positive direction and the oxygen limiting current density increases. Both the mild steel and stainless steel 0Cr18Ni9 experience a significant increase of the mass loss by increasing erosion, and erosive wear was dominated by severe micro-plowing. The insufficient mechanical strength of both materials leads to a low resistance to particle removal. Increasing peripheral velocities of the rotating cylinder enhances the corrosion rate of the mild steel. The stainless steel 0Cr18Ni9, due to a high erosive wear, also suffers from similar erosion-corrosion damage, despite that its corrosion resistance is much higher than that of the mild steel.
基金supported by National Natural Science Foundation of China(No.51576174)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120101110099)the Fundamental Research Funds for the Central Universities(No.2015FZA4011)
文摘In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.
基金Akanksha Tiwari was supported by DST-INSPIRE fellowship from the Department of Science and Technology,Government of India.
文摘Mental rotation(MR)is an important aspect of cognitive processing in gaming since transformation andmanipulation of visuospatial information are necessary in order to execute a gaming task.This study provides insights on saccadic characteristics in gaming task performance that involves 2D and 3D isomorphic objects with varying angular disparity.Healthy participants(N=60)performedMR gaming task.Each participantwas tested individually in an acoustic treated lab environment.Gaze behavior data of all participants were recorded during task execution and analyzed to find the changes in spatiotemporal characteristics of saccades associated with the variation in angular disparity and dimensionality.There were four groups with unique combination of angular disparity and dimensionality,each with fifteen participants randomly assigned.Results indicate that the spatial characteristics of the object affect the temporal aspect of saccade(duration),whereas the spatial aspect of the saccade(amplitude)is influenced by the objects’dimension.A longer saccade duration indicates a prolonged suppression of spatial information processing during the MR tasks with objects at convex range angular disparities.Therefore,the MR tasks with convex angular disparity become more complex to process compared to the tasks with reflex angular disparity.MR process is faster and more accurate with 3D objects compared to the 2D objects.There is an interaction between angular disparity and dimensionality in terms of mental demand,such that theMR processing with 2Dobjects in reflex angular disparitywasmoremental demanding than that of convex angular disparity;however,this trend was absent in case of 3Dobjects.Hence,during the MR task,the longer saccade duration implies that the taskswith convex angular disparities become comparativelymore challenging.Also,the lower saccadic amplitude for 2D objects indicates difficulties in processing due to deficient visual features.The findings could help in framing the computer-based game(or videogame)concerningMRabilities for training or rehabilitation purposes.
基金financially supported in part by the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.
基金Projects(51338009,51178422)supported by the National Natural Science Foundation of China
文摘A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate cyclically with the magnitudes of the principal stresses keeping constant. The anisotropy of the reconstituted clay is analyzed from the monotonic shearing tests. Obvious pore pressure is induced by the principal stress rotation alone even with shear stress q0=5 k Pa. Strain components also accumulate with increasing the number of cycles and increases suddenly at the onset of failure. The deviatoric shear strain of 7.5% can be taken as the failure criterion for clay subjected to the pure cyclic principal stress rotation. The intermediate principal stress parameter b plays a significant role in the development of pore pressure and strain. Specimens are weakened by cyclic rotational shearing as the shear modulus decreases with increasing the number of cycles, and the shear modulus reduces more quickly with larger b. Clear deviation between the directions of the principal plastic strain increment and the principal stress is observed during pure principal stress rotation. Both the coaxial and non-coaxial plastic mechanisms should be taken into consideration to simulate the deformation behavior of clay under pure principal stress rotation. The mechanism of the soil response to the pure principal stress rotation is discussed based on the experimental observations.
文摘General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structures have diverse variables, studies to assess behaviors resulting from various variables are continuously required to supplement the imperfections related to such variables. In the present study, materials elastic modulus and yield strength were selected as variables for strength that would be applied to diagrid structural systems in the form of Twisters among the irregular shaped buildings classified by Vollers and that affect the structural design of these structural systems. The purpose of this study is to conduct sensitivity analysis for axial rotation diagrid structural systems according to changes in brace angles in order to identify the design variables that have relatively larger effects and the tendencies of the sensitivity of the structures according to changes in brace angles and axial rotation angles.
文摘We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.
文摘Staircase is an important means of vertical transportation. Staircase design exerts a great influence on the aesthetics, transportation efficiency, user comfort and experience level. In this paper, a survey on the staircase rotation preference was conducted, based on the environment behavior studies. Different user frequencies of a pair of scissors stairs in the 2nd teaching building of North China University of Technology were analyzed. The psychological effect was evaluated and quantified, and the user preference on the two staircase rotations was then withdrawn. The survey found that the type of staircase with clockwise upstairs was much more preferred (78%) than the other staircase rotation anti-clock upstairs. Considering different genders, the female shows a 66% higher preference inclination of this type of staircase rotation than the male. To improve the transportation efficiency of the staircase in case of fire, the result of this paper can be very constructive for the evacuation staircase rotation choice for the high-rise buildings.
文摘Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the user are interested in the results of PD measurements. However, PDs hardly represent the cause of the failure, more likely they are claimed as the outcome of a failure. This paper deals with the insulation of a 6 kV electrical machine, whereas PD measurements were carried out at a single stator from wound coils. During manufacturing, these coils were equipped with different materials for the OCP (outer corona protection). Using different PD measurement systems and different bandwidths, investigations of the PD behavior of the coils were carried out. Additionally, the surface resistivity of the corona protection was determined. As a result, conclusions for the correlations between the resistance of the OCP as well as the PD behavior are stated. Furthermore, the influence of using different measurement systems, different measuring circuits, and different bandwidths is shown.
基金The National Nature Science Foundation of China under contract No.42071007the Nature Science Foundation of Hainan Province under contract Nos 422RC665,421QN0883,and 423RC553。
文摘Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear characteristics and nonlinear behavior of the medium-to long-term shoreline evolution of Jinghai Bay,eastern Guangdong Province.In particular,shoreline rotation caused by a shore-normal coastal structure is emphasized.The results show that the overall shoreline evolution over the past 30 years is characterized by erosion on the southwest beach,with an average erosion rate of 3.1 m/a,and significant accretion on the northeast beach,with an average accretion rate of 5.6 m/a.Results of the M–K trend test indicate that significant shoreline changes occurred in early 2006,which can be attributed to shore-normal engineering.Prior to that engineering construction,the shorelines are slightly eroded,where the average erosion rate is 0.7 m/a.However,after shore-normal engineering is performed,the shoreline is characterized by significant erosion(3.2 m/a)on the southwest beach and significant accretion(8.5 m/a)on the northeast beach,thus indicating that the shore-normal engineering at the updrift headland contributes to clockwise shoreline rotation.Further analysis shows that the clockwise shoreline rotation is promoted not only by longshore sediment transport processes from southwest to northeast,but also by cross-shore sediment transport processes.These findings are crucial for beach erosion risk management,coastal disaster zoning,regional sediment budget assessments,and further observations and predictions of beach morphodynamics.