In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis p...In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis proposing a 2-dimensional classification algorithm (LS algorithm). The core of algorithm consists of two parts: structure the non-collision hash function, which is constructed mainly based on destination/source port and protocol type field so that the hash function can avoid space explosion problem; introduce jumping table Trie-tree based LS algorithm in order to reduce time complexity. The test results show that the classification rate of NHJTTT algorithm is up to 1 million packets per second and the maximum memory consumed is 9 MB for 10 000 rules. Key words IP classification - lookup algorithm - trie-tree - non-collision hash - jumping table CLC number TN 393.06 Foundation item: Supported by the Chongqing of Posts and Telecommunications Younger Teacher Fundation (A2003-03).Biography: SHANG Feng-jun (1972-), male, Ph.D. candidate, lecture, research direction: the smart instrument and network.展开更多
Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary...Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法...如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法相结合,引入少量的虚拟设备,极大地减少了存储空间.理论和实验证明,CCHDP算法可以按照设备的权重公平地分布数据,自适应存储设备的增加和删除,在存储规模发生变化时迁移最少的数据量,并且可以快速地定位数据,对存储空间的消耗较少.展开更多
文摘In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis proposing a 2-dimensional classification algorithm (LS algorithm). The core of algorithm consists of two parts: structure the non-collision hash function, which is constructed mainly based on destination/source port and protocol type field so that the hash function can avoid space explosion problem; introduce jumping table Trie-tree based LS algorithm in order to reduce time complexity. The test results show that the classification rate of NHJTTT algorithm is up to 1 million packets per second and the maximum memory consumed is 9 MB for 10 000 rules. Key words IP classification - lookup algorithm - trie-tree - non-collision hash - jumping table CLC number TN 393.06 Foundation item: Supported by the Chongqing of Posts and Telecommunications Younger Teacher Fundation (A2003-03).Biography: SHANG Feng-jun (1972-), male, Ph.D. candidate, lecture, research direction: the smart instrument and network.
基金partially supported by the National Key Research and Development Program of China(No.2018 AAA0100400)the Natural Science Foundation of Shandong Province(Nos.ZR2020MF131 and ZR2021ZD19)the Science and Technology Program of Qingdao(No.21-1-4-ny-19-nsh).
文摘Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
文摘如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法相结合,引入少量的虚拟设备,极大地减少了存储空间.理论和实验证明,CCHDP算法可以按照设备的权重公平地分布数据,自适应存储设备的增加和删除,在存储规模发生变化时迁移最少的数据量,并且可以快速地定位数据,对存储空间的消耗较少.