The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode....The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.However,this approach can be complex and challenging.Fortunately,The Japan Aerospace Exploration Agency (JAXA) offers freely available satellite orbit and clock correction products called Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA),which can enhance positioning accuracy through the precise point positioning (PPP) method.This study focuses on evaluating PPP static mode positioning using MADOCA products and comparing the results with the highly precise relative positioning method.By analyzing a network of 20 GNSS stations in Indonesia,we found that the PPP method using MADOCA products provided favorable positioning estimates.The median discrepancies and the corresponding median absolute deviation (MAD) for easting,northing,and up components were estimated as 9±18 mm,10±9 mm,and 3±40 mm,respectively.These results indicate that PPP with MADOCA products can be a reliable alternative for establishing Indonesia's horizontal control networks,particularly for orders 0,1,2,and 3,and for a broad spectrum of geoscience monitoring activities.However,considerations such as epoch transformations and seismic activities should be taken into account for accurate positioning applications that comply with the definition of the national reference framework.展开更多
With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLO...With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.展开更多
To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on O...To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on Oct 31st, 2010, were adopted for analyses, different correction models of various errors were discussed and their influences on traditional zero-difference model were analyzed. The results show that the errors cannot be ignored. They must be corrected with suitable models and estimated with auxiliary parameters. The influence magnitudes of all errors are defined, and the results have guiding significance to improve the accuracy of precise point positioning zero-difference model.展开更多
This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was...This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.展开更多
The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the...The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.展开更多
Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has sig...Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.展开更多
文摘The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.However,this approach can be complex and challenging.Fortunately,The Japan Aerospace Exploration Agency (JAXA) offers freely available satellite orbit and clock correction products called Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA),which can enhance positioning accuracy through the precise point positioning (PPP) method.This study focuses on evaluating PPP static mode positioning using MADOCA products and comparing the results with the highly precise relative positioning method.By analyzing a network of 20 GNSS stations in Indonesia,we found that the PPP method using MADOCA products provided favorable positioning estimates.The median discrepancies and the corresponding median absolute deviation (MAD) for easting,northing,and up components were estimated as 9±18 mm,10±9 mm,and 3±40 mm,respectively.These results indicate that PPP with MADOCA products can be a reliable alternative for establishing Indonesia's horizontal control networks,particularly for orders 0,1,2,and 3,and for a broad spectrum of geoscience monitoring activities.However,considerations such as epoch transformations and seismic activities should be taken into account for accurate positioning applications that comply with the definition of the national reference framework.
基金Supported by the National Natural Science Foundation of China (No. 41604018)the Fundamental Research Funds for the Central Universities(No. 2019B17514)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. nos. sjky19_05132019B60114)
文摘With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.
基金Project(20060417004)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2009S049)supported by the Liaoning Province University Research Program,China
文摘To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on Oct 31st, 2010, were adopted for analyses, different correction models of various errors were discussed and their influences on traditional zero-difference model were analyzed. The results show that the errors cannot be ignored. They must be corrected with suitable models and estimated with auxiliary parameters. The influence magnitudes of all errors are defined, and the results have guiding significance to improve the accuracy of precise point positioning zero-difference model.
文摘This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.
基金supported by“The National Key Research and Development Program of China(No.2020YFA0713502)”“The National Natural Science Foundation of China(No.41874039)”+1 种基金“Jiangsu National Science Foundation(No.BK20191342)”“Fundamental Research Funds for the Central Universities(No.2019ZDPY-RH03)”。
文摘The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.
文摘Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.