Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag...Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works.展开更多
By using star product method, the He-McKellar-Wilkens (HMW) effect for spin-one neutral particle on noncommutative (NC) space is studied. After solving the Kemmer-like equations on NC space, we obtain the topologi...By using star product method, the He-McKellar-Wilkens (HMW) effect for spin-one neutral particle on noncommutative (NC) space is studied. After solving the Kemmer-like equations on NC space, we obtain the topological HMW phase on NC space where the additional terms related to the space-space non-commutativity are given explicitly.展开更多
The effective action of chiral QCD2 was studied in two-dimensional non-commutative space-time by usingpath integral approach. It is shown that vector boson has a mass generation and the effective Lagrangian contains a...The effective action of chiral QCD2 was studied in two-dimensional non-commutative space-time by usingpath integral approach. It is shown that vector boson has a mass generation and the effective Lagrangian contains aterm corresponding to a Wess-Zumino-Witten-like term.展开更多
The Fock-Darwin system is studied in noncommutative quantum mechanics. We not only obtain its energy eigenvalues and eigenstates in noncommutative phase space, but also give an electron orbit description as well as th...The Fock-Darwin system is studied in noncommutative quantum mechanics. We not only obtain its energy eigenvalues and eigenstates in noncommutative phase space, but also give an electron orbit description as well as the general expressions of the magnetization and the susceptibility in a noncommutative situation. Further, we discuss two particular cases of temperature and present some interesting results different from those obtained from usual quantum mechanics such as the susceptibility dependent on a magnetic field at high temperatures, the occurrence of the magnetization in a zero magnetic field and zero temperature limit, and so on.展开更多
For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld inva...For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.展开更多
This paper introduces an ideal-boyed zero-divisor graph of non-commutative rings,denoted ΓI(R).ΓI(R) is a directed graph.The properties and possible structures of the graph is studied.
The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the mod...The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the modified equations of motion. Next, using novel transformations, we solve the equation of motion and report the exact analytical solutions.展开更多
The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year w...The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year with the use of the classification of finite simple groups (CFSG). A series of interesting questions arise naturally. First of all, it is not clear whether it is possible to avoid CFSG or not. On the other hand, what happens for infinite groups? Since the status of knowledge of the non-commuting graph and of the prime graph is satisfactory, is it possible to find relations between these two graphs and the Sylow graph? In the present note we make the point of the situation and formulate the above questions in appropriate way.展开更多
We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined t...We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.展开更多
In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation i...In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.展开更多
Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commutin...Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.展开更多
Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probab...Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probability of offering interaction with the cloud.However,the fog computing characteristics are suscep-tible to counteract the challenges of security.The issues present with the Physical Layer Security(PLS)aspect in fog computing which included authentication,integrity,and confidentiality has been considered as a reason for the potential issues leading to the security breaches.In this work,the Octonion Algebra-inspired Non-Commutative Ring-based Fully Homomorphic Encryption Scheme(NCR-FHE)was proposed as a secrecy improvement technique to overcome the impersonation attack in cloud computing.The proposed approach was derived through the benefits of Octonion algebra to facilitate the maximum security for big data-based applications.The major issues in the physical layer security which may potentially lead to the possible security issues were identified.The potential issues causing the impersonation attack in the Fog computing environment were identified.The proposed approach was compared with the existing encryption approaches and claimed as a robust approach to identify the impersonation attack for the fog and edge network.The computation cost of the proposed NCR-FHE is identified to be significantly reduced by 7.18%,8.64%,9.42%,and 10.36%in terms of communication overhead for varying packet sizes,when compared to the benchmarked ECDH-DH,LHPPS,BF-PHE and SHE-PABF schemes.展开更多
This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole...This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.展开更多
The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutativ...The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.展开更多
The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two en...The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.展开更多
Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mo...Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mode harmonic oscillator in non-commutative space with the coordinate operators satisfying cyclic commutative relations, [X1, X2] = [X2, X3]=[X3, X1] = iθ, and this method seems effective and concise.展开更多
Various properties of the characteristic functions of random variables in a non-commutative C*-probability space are studied in this paper. It turns out that the distributions of random variables are uniquely determin...Various properties of the characteristic functions of random variables in a non-commutative C*-probability space are studied in this paper. It turns out that the distributions of random variables are uniquely determined by their characteristic functions. By using the properties of characteristic functions, a central limit theorem for a sequence of independent identically distributed random variables in a C*-probability space is established as well.展开更多
Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. A...Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.展开更多
The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the ...The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the strongest limitation on bipartite separability is realized in the limit and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.展开更多
This paper presents the non-associative and non-commutative properties of the 123-avoiding patterns of Aunu permutation patterns. The generating function of the said patterns has been reported earlier by the author [1...This paper presents the non-associative and non-commutative properties of the 123-avoiding patterns of Aunu permutation patterns. The generating function of the said patterns has been reported earlier by the author [1] [2]. The paper describes how these non-associative and non commutative properties can be established by using the Cayley table on which a binary operation is defined to act on the 123-avoiding and 132-avoiding patterns of Aunu permutations using a pairing scheme. Our results have generated larger matrices from permutations of points of the Aunu patterns of prime cardinality. It follows that the generated symbols can be used in further studies and analysis in cryptography and game theory thereby providing an interdisciplinary approach and applications of these important permutation patterns.展开更多
文摘Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works.
基金supported by the National Natural Science Foundation of China (Grant Nos 10575026, 10465004, 10665001 and 10447005)
文摘By using star product method, the He-McKellar-Wilkens (HMW) effect for spin-one neutral particle on noncommutative (NC) space is studied. After solving the Kemmer-like equations on NC space, we obtain the topological HMW phase on NC space where the additional terms related to the space-space non-commutativity are given explicitly.
文摘The effective action of chiral QCD2 was studied in two-dimensional non-commutative space-time by usingpath integral approach. It is shown that vector boson has a mass generation and the effective Lagrangian contains aterm corresponding to a Wess-Zumino-Witten-like term.
基金supported by the National Natural Science Foundation of China (Grant Nos 10575026 and 10875035)the Natural Science Foundation of Zhejiang Province,China (Grant No Y607437)
文摘The Fock-Darwin system is studied in noncommutative quantum mechanics. We not only obtain its energy eigenvalues and eigenstates in noncommutative phase space, but also give an electron orbit description as well as the general expressions of the magnetization and the susceptibility in a noncommutative situation. Further, we discuss two particular cases of temperature and present some interesting results different from those obtained from usual quantum mechanics such as the susceptibility dependent on a magnetic field at high temperatures, the occurrence of the magnetization in a zero magnetic field and zero temperature limit, and so on.
文摘For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.
基金Supported by Guangxi Natural Sciences Foundation(0575052,0640070)Supported byInnovation Project of Guangxi Graduate Education(2006106030701M05)Supported Scientific Research Foun-dation of Guangxi Educational Committee
文摘This paper introduces an ideal-boyed zero-divisor graph of non-commutative rings,denoted ΓI(R).ΓI(R) is a directed graph.The properties and possible structures of the graph is studied.
基金Supported by the China Scholarship Councilthe Hanjiang Scholar Project of Shaanxi University of Technology
文摘The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the modified equations of motion. Next, using novel transformations, we solve the equation of motion and report the exact analytical solutions.
文摘The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year with the use of the classification of finite simple groups (CFSG). A series of interesting questions arise naturally. First of all, it is not clear whether it is possible to avoid CFSG or not. On the other hand, what happens for infinite groups? Since the status of knowledge of the non-commuting graph and of the prime graph is satisfactory, is it possible to find relations between these two graphs and the Sylow graph? In the present note we make the point of the situation and formulate the above questions in appropriate way.
文摘We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.
文摘In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.
基金The NSF(11301150,11371124)of Chinathe NSF(142300410134)of Henan ProvincePlan for Scientific Innovation Talent(11CXRC19)of Henan University of Technology
文摘Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.
文摘Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probability of offering interaction with the cloud.However,the fog computing characteristics are suscep-tible to counteract the challenges of security.The issues present with the Physical Layer Security(PLS)aspect in fog computing which included authentication,integrity,and confidentiality has been considered as a reason for the potential issues leading to the security breaches.In this work,the Octonion Algebra-inspired Non-Commutative Ring-based Fully Homomorphic Encryption Scheme(NCR-FHE)was proposed as a secrecy improvement technique to overcome the impersonation attack in cloud computing.The proposed approach was derived through the benefits of Octonion algebra to facilitate the maximum security for big data-based applications.The major issues in the physical layer security which may potentially lead to the possible security issues were identified.The potential issues causing the impersonation attack in the Fog computing environment were identified.The proposed approach was compared with the existing encryption approaches and claimed as a robust approach to identify the impersonation attack for the fog and edge network.The computation cost of the proposed NCR-FHE is identified to be significantly reduced by 7.18%,8.64%,9.42%,and 10.36%in terms of communication overhead for varying packet sizes,when compared to the benchmarked ECDH-DH,LHPPS,BF-PHE and SHE-PABF schemes.
基金DST,New Delhi,India,for its financial support for research facilities under DSTFIST-2019。
文摘This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90303003 and 10575026) and the Natural Science Foundation of Zhejiang Province, China (Grant No M103042).
文摘The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.
文摘The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.
基金the President Foundation of the Chinese Academy of Sciencesthe Specialized Research Fund for the Doctoral Program of Higher Education
文摘Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mode harmonic oscillator in non-commutative space with the coordinate operators satisfying cyclic commutative relations, [X1, X2] = [X2, X3]=[X3, X1] = iθ, and this method seems effective and concise.
基金the Shanghai Science and Technology Commission, No. 01ZA14003.
文摘Various properties of the characteristic functions of random variables in a non-commutative C*-probability space are studied in this paper. It turns out that the distributions of random variables are uniquely determined by their characteristic functions. By using the properties of characteristic functions, a central limit theorem for a sequence of independent identically distributed random variables in a C*-probability space is established as well.
文摘Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.
文摘The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the strongest limitation on bipartite separability is realized in the limit and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.
文摘This paper presents the non-associative and non-commutative properties of the 123-avoiding patterns of Aunu permutation patterns. The generating function of the said patterns has been reported earlier by the author [1] [2]. The paper describes how these non-associative and non commutative properties can be established by using the Cayley table on which a binary operation is defined to act on the 123-avoiding and 132-avoiding patterns of Aunu permutations using a pairing scheme. Our results have generated larger matrices from permutations of points of the Aunu patterns of prime cardinality. It follows that the generated symbols can be used in further studies and analysis in cryptography and game theory thereby providing an interdisciplinary approach and applications of these important permutation patterns.