As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新...考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新生目标量测集,在两个量测集分别运用PHD组处理更新基础上建立了处理模块的交互与协同机制,力图在保证跟踪精度的同时提高计算效率。该框架由于采用PHD组处理方式而具有状态自动提取功能。进一步给出了该框架的序贯蒙特卡罗算法实现。仿真结果表明,该算法在计算效率以及状态提取精度上具有明显优势。展开更多
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
文摘考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新生目标量测集,在两个量测集分别运用PHD组处理更新基础上建立了处理模块的交互与协同机制,力图在保证跟踪精度的同时提高计算效率。该框架由于采用PHD组处理方式而具有状态自动提取功能。进一步给出了该框架的序贯蒙特卡罗算法实现。仿真结果表明,该算法在计算效率以及状态提取精度上具有明显优势。