Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model wh...By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.展开更多
In this paper, the method of non-conforming mixed finite element for second order elliptic problems is discussed and a format of real optimal order for the lowest order error estimate.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
文摘By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.
基金Project supported by the Cultivating Foundation of Youthful Backbone of Science and Technologyof Beijing, the National Science
文摘In this paper, the method of non-conforming mixed finite element for second order elliptic problems is discussed and a format of real optimal order for the lowest order error estimate.
基金Supported by the Guizhou Province Natural Science Foundation of China([2011]2093)the Natural Scientific Research Foundation of Guizhou Provincial Education Department((2012)058)