期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots
1
作者 Donghui Wu Qilin Zhao +1 位作者 Jian Sun Xiurong Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期231-235,共5页
Alkaline phosphatase(ALP) activity assay is not only significant to the clinical diagnosis of some related disease, but also momentous to the construction of ALP-based enzyme-linked immunosorbent assay(ELISA). Herein,... Alkaline phosphatase(ALP) activity assay is not only significant to the clinical diagnosis of some related disease, but also momentous to the construction of ALP-based enzyme-linked immunosorbent assay(ELISA). Herein, for the first time, we have discovered that ascorbic acid(AA) can specially react with N-methylethylenediamine(N-MEDA) to generate fluorescent non-conjugated polymer dots(NCPDs) under mild conditions. On the basis of the AA-responsive emission and ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate(AA2P) to AA, we have exploited a fluorometric ALP activity assay with high sensitivity and selectivity. Furthermore, by means of conventional ALP-based ELISA platform, a conceptual fluorescent ELISA has been constructed and applied in the potential clinical diagnosis, during which cardiac troponin I(cTnI), a well-established biomarker of acute myocardial infarction, has been chosen as the model target. We envision that such original fluorescent NCPDs generation-enabled ELISA could become a versatile tool in biochemical sensing and medical diagnosis in the future. 展开更多
关键词 Alkaline phosphatase non-conjugated polymer dots Fluorescent sensor Fluorescent ELISA Cardiac troponin I
原文传递
Ultraviolet‑Irradiated All‑Organic Nanocomposites with Polymer Dots for High‑Temperature Capacitive Energy Storage
2
作者 Jiale Ding Yao Zhou +5 位作者 Wenhan Xu Fan Yang Danying Zhao Yunhe Zhang Zhenhua Jiang Qing Wang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期398-406,共9页
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee... Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites. 展开更多
关键词 High-temperature energy storage polymer dots Ultraviolet irradiation All-organic composite dielectrics
下载PDF
A Furan-Substituted Polymeric Hole-Transporting Material for Energy Level Regulation and Less Planarity in Colloidal Quantum Dot Solar Cells
3
作者 Jun woo Lee Duck Hoon Lee +5 位作者 Younghoon Kim Jin Young Park Hyung Ryul You Taiho Park Minjun Kim Jongmin Choi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期340-346,共7页
For efficient colloidal quantum dot(CQD)solar cells(CQD-SCs),thiol-passivated p-type CQDs are generally used as a hole-transporting material(HTM);however,there are issues with the control of optoelectrical properties,... For efficient colloidal quantum dot(CQD)solar cells(CQD-SCs),thiol-passivated p-type CQDs are generally used as a hole-transporting material(HTM);however,there are issues with the control of optoelectrical properties,low thiol passivation rate,and poor morphology with a power conversion efficiency(PCE)of approximately 11%.Although polymeric HTMs have been introduced to address these issues,maximizing efficiency and achieving green-solvent processability and thermal stability for commercialization is necessary.Here,we synthesize a novel benzodifuran(BDF)-based HTM(asy-ranPBTBDF)showing an electron-deficient state,low steric hindrance,and low planarity compared to those of a typical benzodithiophene(BDT)-based HTM(asy-ranPBTBDT).BDF properties lead to deep high occupied molecular orbital(HOMO)levels,closeπ-πstacking,excellent solubility,and amorphous properties related to efficiency,green-solvent processability,and thermal stability.With these benefits,the asy-ranPBTBDF-based CQD-SC showed enhanced open-circuit voltage(Voc)(0.65 V)and PCE(13.29%)compared to those of the asy-ranPBTBDT-based device(0.63 V and 12.22%)in toxic processes with chlorobenzene.The asy-ranPBTBDF-based CQD-SC showed a PCE of 12.51%in a green-solvent process with 2-methylanisole and improved thermal stability at 80℃(83.8%retaining after 24 h)owing to less lateral crystallization than the asy-ranPBTBDT-based device(60.8%retaining after 24 h). 展开更多
关键词 colloidal quantum dot green-solvent photovoltaics semiconducting polymers stability
下载PDF
Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells 被引量:1
4
作者 Zhiquan Zhang Zheling Zhang +4 位作者 Yufu Yu Bin Zhao Sheng Li Jian Zhang Songting Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期196-202,I0007,共8页
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in... Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs. 展开更多
关键词 Organic solar cells Electron transport materials Thickness-insensitive non-conjugated polymer
下载PDF
Nanocomposite Polymer Hydrogels Reinforced by Carbon Dots and Hectorite Clay 被引量:1
5
作者 MA Shuai ZHENG Hang +3 位作者 CHEN Yanjun ZOU Jincheng ZHANG Chaocan WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期287-292,共6页
Herein, two nanoparticles with different dimensions, spherical carbon dots (C-dots) and sheetlike hectorite clay, were used as physical crosslinkers to fabricate C-dots-clay-poly(N-isopropylacrylamide)nanocompositehyd... Herein, two nanoparticles with different dimensions, spherical carbon dots (C-dots) and sheetlike hectorite clay, were used as physical crosslinkers to fabricate C-dots-clay-poly(N-isopropylacrylamide)nanocompositehydrogels (coded as C-dots-clay-PNIPAm hydrogels). The mechanical properties, fluorescence features and thermal-responsive properties of the C-dots-clay-PNIPAm hydrogels were evaluated. The experimental results indicate that synergistic effects of C-dots and hectorite clay nanoparticles are able to significantly enhance mechanical properties of the hydrogels. The hydrogels can be stretched up to 1730%with strength as high as 250 kPa when the C-dots concentration is 0.1wt%and the clay concentration is 6wt%. The hydrogels exhibit complete self-healing through autonomic reconstruction of crosslinked network a damaged interface. The hydrogels show favorable thermal-responsive properties with the volume phase transition around 34℃. In addition, the hydrogels are endowed with fluorescence features that are associated with C-dots in the hydrogels. It can be expected that the as-fabricated C-dots-clay-PNIPAm hydrogels are promising for applications in sensors, biomedical carriers and tissue engineering. 展开更多
关键词 polymer hydrogels NANOCOMPOSITE REINFORCEMENT carbon dots hectorite clay
下载PDF
High pressure and high temperature induced polymerization of C60 quantum dots
6
作者 阮世豪 韩春淼 +2 位作者 李福禄 李冰 刘冰冰 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期396-400,共5页
We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a... We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a dimer(D) phase(62 vol%) and a one-dimensional chain orthorhombic(O) phase(38 vol%) was obtained at 1.5 GPa and 300℃.At 2.0 GPa and 430℃,the proportion of the O phase increased to 46 vol%,while the corresponding D phase decreased to 54 vol%.Compared with bulk and nanosized C60,C60 QDs cannot easily form a high-dimensional polymeric structure.This fact is probably caused by the small particle size,orientation of the disordered structure of C60 QDs,and the barrier of oxide function groups between C60 molecules.Our studies enhance the understanding of the polymerization behavior of low-dimension C60 nanomaterials under HPHT conditions. 展开更多
关键词 C60 quantum dots HIGH pressure and HIGH temperature FULLERENE polymer
下载PDF
Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy
7
作者 Lu Guo Bo Xu +1 位作者 Haobin Chen Ying Tang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第6期17-29,共13页
Photodynamic therapy(PDT)is a new and rapidly developing treatment modality for dinical cancer therapy.Semiconductor polymer dots(Pdots)doped with photosensitizers have been successfully applied to PDT,and have made p... Photodynamic therapy(PDT)is a new and rapidly developing treatment modality for dinical cancer therapy.Semiconductor polymer dots(Pdots)doped with photosensitizers have been successfully applied to PDT,and have made progress in the field of tumor therapy.However,the problems of severe photosensitivity and limited tisue penetration depth are needed to be solved during the implementation process of PDT.Here we developed the Pdots doped with photosensitizer molecule Chlorin e6(Ce6)and photochromic molecule 1,2-bis(2,4-dimethy1-5 phenyl-3-thiophene)-3,3,4,5-hexafuoro-1-cyclopentene(BTE)to construct a photoswitchable nanoplatform for PDT.The Ce6-BTE-doped Pdots were in the green region,and the tissue penetration depth was increased compared with most Pdots in the blue region.The reversible conversion of BTE under different light irradiation was utilized to regulate the photodynamic effect and solve the problem of photosensitivity.The prepared Ce6-BTE-doped Pdots had small size,excellent optical property,efficient ROS generation and good photoswitchable ability.The cellular uptake,cytotoxicity,and photodynamic effect of the Pdots were detected in human colon tumor cells.The experiments in vitro indicated that Ce6-BTE-doped Pdots could exert excellent photodynamic effect in ON state and reduce photosensitivity in OFF state.These results demonstrated that this nanoplatform holds the potential to be used in clinical PDT. 展开更多
关键词 Photodynamic therapy semiconductor polymer dots PHOTOSENSITIZER tumor therapy
下载PDF
Polyelectrolyte complex-based thermochromic hydrogels containing carbonized polymer dots for smart windows with fast response,excellent solar modulation ability,and high durability
8
作者 Yuting Wang Xu Fang +3 位作者 Siheng Li Ni An Hongyu Pan Junqi Sun 《SmartMat》 2024年第2期124-136,共13页
Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlu... Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlum),tailorable critical temperature(τc),strong solar modulation ability(ΔTsol),and long-term durability remains a huge challenge.In this study,hydrogel-based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride,polyacrylic acid,and carbonized polymer dots(CPDs)complexes between two pieces of transparent substrates.Benefiting from the incorporation of nanosized CPDs,the thermochromic hydrogel has an ultrahigh Tlum of~98.7%,a desirableτc of~24.2℃,aΔTsol of~89.3%and a rapid transition time of~3 s from opaque state to transparent state.Moreover,the thermochromic hydrogel exhibits excellent anti-freezing ability,tight adhesion toward various substrates,and excellent self-healing capability.The self-healing capability enables the fabrication of large-area smart windows by welding multiple hydrogel pieces.The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles.The model houses with smart windows can achieve a temperature reduction of 9.2℃,demonstrating the excellent indoor temperature modulation performance of the smart windows. 展开更多
关键词 carbonized polymer dots polyelectrolyte complexes smart windows thermochromic hydrogels
原文传递
半导体聚合物量子点(Pdots)在生物医学领域的研究进展
9
作者 刘义章 王磊 +1 位作者 周凯 巩振虎 《佛山科学技术学院学报(自然科学版)》 CAS 2018年第5期67-72,共6页
半导体聚合物量子点(Pdots)作为一类新型荧光材料,因其优越的光物理性质,在细胞成像、生物化学检测和药物载体及基因治疗等生物医学领域有着极其广阔的应用前景。介绍了Pdots的制备方法、光物理性质,重点讨论了Pdots作为荧光探针在细胞... 半导体聚合物量子点(Pdots)作为一类新型荧光材料,因其优越的光物理性质,在细胞成像、生物化学检测和药物载体及基因治疗等生物医学领域有着极其广阔的应用前景。介绍了Pdots的制备方法、光物理性质,重点讨论了Pdots作为荧光探针在细胞成像及生物化学检测方面的研究进展,综述了当前研究的主要发展方向和存在的问题。 展开更多
关键词 半导体聚合物量子点(Pdots) 荧光探针 细胞成像 生物检测
下载PDF
The Current Progress and Challenges of Carbonized Polymer Dot-Based Room-Temperature Phosphorescent Materials
10
作者 Chengyu Zheng Songyuan Tao Bai Yang 《CCS Chemistry》 CSCD 2024年第3期604-622,共19页
Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between t... Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between their special structures and luminescent properties.In recent years,great progress has been made in the field of CPD-based room-temperature phosphorescent materials.This review pays particular attention to how the special“core–shell”structure of CPDs influences the activation of roomtemperature phosphorescence(RTP).The strategies and vital factors to activate RTP for CPD-based materials in both solid state and water were reviewed in detail to elaborate on the effect of the special structure on RTP generation.Furthermore,some perspectives on the current challenges were also provided to guide the further development of CPD-based room-temperature phosphorescent materials. 展开更多
关键词 room-temperature phosphorescent materials carbon dots carbonized polymer dots “core-shell”structure photoluminescent mechanism
原文传递
Pdots-RVG-Curcumin纳米复合物穿透体外血脑屏障模型的研究 被引量:1
11
作者 文欣宜 苏炳银 +1 位作者 李淑蓉 韩玉萍 《成都医学院学报》 CAS 2021年第3期278-284,共7页
目的探究Pdots-RVG-Curcumin纳米复合物穿透血脑屏障并靶向多巴胺能神经元的作用。方法采用纳米共沉淀的方法制备半导体聚合物量子点(Pdots)。利用静电吸附原理,将其连接狂犬病毒糖蛋白(RVG)以及姜黄素(Cur),制备Pdots-RVG-Cur复合物;... 目的探究Pdots-RVG-Curcumin纳米复合物穿透血脑屏障并靶向多巴胺能神经元的作用。方法采用纳米共沉淀的方法制备半导体聚合物量子点(Pdots)。利用静电吸附原理,将其连接狂犬病毒糖蛋白(RVG)以及姜黄素(Cur),制备Pdots-RVG-Cur复合物;透射电子显微镜观察Pdots、Pdots-RVG、Pdots-RVG-Cur的形态,动态光散射技术测量三者的粒径,并检测其稳定性;CCK-8检测Pdots-RVG的生物相容性;利用b.End3细胞和带有PET膜的细胞小室,构建体外血脑屏障(BBB)模型,通过4 h试漏实验和荧光素钠通透性实验评价模型的功能、状态;将BBB体外模型移至接种MN9D细胞的培养皿之上,将游离Cur和Pdots-RVG-Cur纳米复合物加入到上层BBB模型中,激光共聚焦显微镜(CLSM)观察MN9D细胞对两种药物的摄取情况,从而确定其穿透BBB的能力。结果成功构建Pdots-RVG-Cur纳米复合物,呈球形,粒径为320 nm左右;CCK-8测得当Pdots浓度在0~50 mg/L范围内,Pdots-RVG表现出良好的生物相容性;成功构建BBB体外模型,CLSM下观察到Pdots-RVG-Cur组比Cur组进入MN9D中Cur的量更多。结论本项目合成的Pdots-RVG-Cur纳米复合物给药体系提高Cur穿透体外BBB以及被神经元摄取的能力,增强Cur在脑部疾病的应用。 展开更多
关键词 血脑屏障 姜黄素 纳米载体 半导体聚合物量子点
下载PDF
Recent advances in quantum dots-based biosensors for antibiotics detection 被引量:3
12
作者 Rui Ding Yue Chen +4 位作者 Qiusu Wang Zhengzhang Wu Xing Zhang Bingzhi Li Lei Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第3期355-364,共10页
Antibiotics are a category of chemical compounds used to treat bacterial infections and are widely applied in cultivation,animal husbandry,aquaculture,and pharmacy.Currently,residual antibiotics and their metabolites ... Antibiotics are a category of chemical compounds used to treat bacterial infections and are widely applied in cultivation,animal husbandry,aquaculture,and pharmacy.Currently,residual antibiotics and their metabolites pose a potential risk of allergic reactions,bacterial resistance,and increased cancer incidence.Residual antibiotics and the resulting bacterial antibiotic resistance have been recognized as a global challenge that has attracted increasing attention.Therefore,monitoring antibiotics is a critical way to limit the ecological risks from antibiotic pollution.Accordingly,it is desirable to devise new analytical platforms to achieve efficient antibiotic detection with excellent sensitivity and specificity.Quantum dots(QDs)are regarded as an ideal material for use in the development of antibiotic detection biosensors.In this review,we characterize different types of QDs,such as silicon,chalcogenide,carbon,and other doped QDs,and summarize the trends in QD-based antibiotic detection.QD-based sensing applications are classified according to their recognition strategies,including molecularly imprinted polymers(MIPs),aptamers,and immunosensors.We discuss the advantages of QD-derived antibiotic sensors,including low cost,good sensitivity,excellent stability,and fast response,and illustrate the current challenges in this field. 展开更多
关键词 BIOSENSOR Antibiotic Quantum dot Molecularly imprinted polymer APTAMER IMMUNOSENSOR
下载PDF
Molecularly Imprinted Polymer Based on GO-QDs as Enhanced Fluorescent Nanoscale Device for Specific Recognition of Target Protein 被引量:1
13
作者 DING Zhao-qiang GONG Xiao +3 位作者 TAO Lei QUAN Jing NIE Hua-li ZHU Li-min 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期603-608,共6页
In this work the enhanced molecularly imprinted optosensing material based on graphene oxide-quantum dots ( GO- QDs) was synthesized for highly selective and sensitive specific recognition of the target protein, bov... In this work the enhanced molecularly imprinted optosensing material based on graphene oxide-quantum dots ( GO- QDs) was synthesized for highly selective and sensitive specific recognition of the target protein, bovine serum albumin (BSA). Here, GO was introduced to enhance the efficiency of mass-transfer in recognition of target protein. Molecularly imprinted polymer coated GO-QDs using BSA as template (BMIP-coated GO-QDs ) exhibited a fast mass-transfer speed, which could be ascribed to the high volume of efficient surface area and high target recognition efficiency of the synthesized nanoscale device. Under optimal conditions, it was found that the BSA as target protein could remarkably quench the relative fluorescence intensity of BMIP- coated GO-QDs linearly in a concentration-dependent manner that was best described by a Stern-Volmer equation. The Ksv (Stern- Volmer constant) for template BSA was much higher than bovine hemoglobin (BHb) and lysozyme (Lyz), implying a highly selective recognition ability of the BMIP-coated GO-QDs to BSA. This enhanced fluorescent nanoscale device may provide opportunities to develop a system that is efficient and effective and has potential in the design of highly effective fluorescent receptor for recognition of target protein in Droteomics studies. 展开更多
关键词 molecularly imprinted polymer (MIP) graphene oxide(GO) quantum dots (QDs) protein: FLUORESCENT NANOSCALE DEVICE
下载PDF
Phenylfluorenamine-functionalized poly(N-vinylcarbazole)s as dopant-free polymer hole-transporting materials for inverted quasi-2D perovskite solar cells 被引量:1
14
作者 Zhengwu Pan Han Gao +11 位作者 Yingying Yang Qin Zou Darui Peng Pinghui Yang Jiangli Cai Jin Qian Jiewei Li Chengrong Yin Nana Wang Renzhi Li Jianpu Wang Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期123-131,I0004,共10页
In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting m... In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs. 展开更多
关键词 Phenylfluorenamine non-conjugated polymers Dopant-free Hole-transporting materials Quasi-2D perovskite solar cells
下载PDF
All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage 被引量:1
15
作者 Jiale Ding Wenhan Xu +3 位作者 Xuanbo Zhu Zheng Liu Yunhe Zhang Zhenhua Jiang 《Nano Research》 SCIE EI CSCD 2023年第7期10183-10190,共8页
High-temperature polymer dielectrics with high energy density are urgently needed for capacitive energy storage fields.However,the huge conduction loss at elevated temperatures makes the capacitive performance of poly... High-temperature polymer dielectrics with high energy density are urgently needed for capacitive energy storage fields.However,the huge conduction loss at elevated temperatures makes the capacitive performance of polymers degrade sharply,limiting the application of them.Herein,the polymer dots(PDs)with high-electron-affinity were introduced into high-temperature polymers to prepare all-organic nanocomposite dielectrics by solution casting.It is found that polymer dots capture injected electrons via strong electrostatic attraction and impede charges transport and accumulation inside composites,thus reducing leakage current density and improving high-temperature energy storage performance.Consequently,the high-temperature capacitance performance of nanocomposites was improved significantly and reached over 2.5 times that of the pristine polymers,e.g.,the energy density of polyetherimide(PEI)/PD reached 3.24 J·cm^(-3)with excellent electrical fatigue reliability over 20,000 times.This work addresses the current problem of poor discharged energy density of polymer dielectrics at high temperatures with a simple and universal method. 展开更多
关键词 polymer dots trap energy level dielectric properties energy storage
原文传递
Polythiophene Derivatives Carbonized Polymer Dots:Aggregation Induced Solid-State Fluorescence Emission 被引量:1
16
作者 Jian Li Fanghao Zhao +8 位作者 Fuchun Nan Jian Wang Yunxiu Zhang Ke Liang Xiaokuang Xue Tiejin Chen Lin Kong Jiechao Ge Pengfei Wang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第16期1950-1956,共7页
Comprehensive Summary Currently,solid-state fluorescent carbonized polymer dots(CPDs)have attracted attention increasingly due to their applications for optoelectronic display.However,designing CPDs possessing solid-s... Comprehensive Summary Currently,solid-state fluorescent carbonized polymer dots(CPDs)have attracted attention increasingly due to their applications for optoelectronic display.However,designing CPDs possessing solid-state fluorescence and clarifying the fluorescence mechanism remain challenging.Herein,we initially synthesized a novel type of polythiophene derivatives CPDs,poly-4,4’-(thiophene-3,4-diyl)dibenzoic acid carbonized polymer dots(PDBA-CPDs)with solid-state fluorescence.Subsequently,the structural and optical characterization revealed that the solid-state fluorescence originated from the aggregation induced emission of the CPDs.In brief,in aggregation state,the remaining polymer structure groups on the surface of the CPDs overlapped and weakened the non-radiative transition,enhancing solid-state fluorescence emission.Thirdly,three polythiophene-derived CPDs were designed to further demonstrate the aggregation induced solid-state fluorescence mechanism.Finally,owing to their unique properties of solid-state fluorescence,the white LEDs(light emitting diodes)were fabricated with high color rendering index(CRI)of 82.7 and CIE coordinates of(0.37,0.39)using commercial 460 nm chip. 展开更多
关键词 Carbonized polymer dots Aggregation induced emission Solid-state fluorescence Light-emitting devicesl Carbon NANOMATERIALS
原文传递
Polymer types regulation strategy toward the synthesis of carbonized polymer dots with excitation-wavelength dependent or independent fluorescence
17
作者 Jianliang Bai Xinyu Wang +5 位作者 Yaqing Zhu Guojun Yuan Shuang Wu Fu Qin Xu Yu Lili Ren 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期388-392,共5页
Three kinds of carbonized polymer dots(CPDs) synthesized via a one-pot process from ophenylenediamine(OPD), m-phenylenediamine(MPD) and p-phenylenediamine(PPD) exhibit excitationwavelength independent yellow, green an... Three kinds of carbonized polymer dots(CPDs) synthesized via a one-pot process from ophenylenediamine(OPD), m-phenylenediamine(MPD) and p-phenylenediamine(PPD) exhibit excitationwavelength independent yellow, green and red emissions, respectively. In sharp contrast, two kinds of CPDs prepared via a hydrothermal process from citric acid(CA) and diethylenetriamine(DETA) exhibit obvious excitation-wavelength dependent emissions. Through the characterization and comparison of the two types of CPDs, it is concretely revealed that the polymer structure types during the formation of CPDs can effectively control the fluorescence excitation-wavelength independence/dependence. The homogeneous polymer structures contained in CPDs contribute to excitation-wavelength independence, whereas random copolymer structures contribute to excitation-wavelength dependence. These studies are of great significance for further understanding the polymer structures and designing unique optical properties of CPDs. 展开更多
关键词 Carbonized polymer dots Excitation-wavelength dependence Excitation-wavelength independence Homogeneous polymer structures Random polymer structures
原文传递
Red/NIR emission carbonized polymer dots based on citric acid-benzoylurea and their application in lymph nodes imaging
18
作者 Feishi Shan Tingrui Zhang +10 位作者 Chengshuang Liao Xue Yue Jing Zhang Li Yan Yanman Liu Zhixing Cao Min Wang Yahui Zhang Leyong Wang Zhouyu Wang Xiaoqi Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期225-230,共6页
Identification of lymph nodes(LNs)is critical for studies of the structure,the role in disease development,and the efficacy of disease treatment.Carbonized polymer dots(CPDs)are expected to be potential LNs-targeted i... Identification of lymph nodes(LNs)is critical for studies of the structure,the role in disease development,and the efficacy of disease treatment.Carbonized polymer dots(CPDs)are expected to be potential LNs-targeted imaging agents due to their excellent properties with special structure,better photoluminescence(PL)and great biocompatibility.Herein,a red/near infrared(NIR)emission CPDs(RCPDs)with one and two-photon bioimaging based on citric acid(CA)and benzoylurea(BU)are prepared.Notably,the RCPDs are capable of targeting LNs for imaging.Lymphocyte homing has been demonstrated to be the cellular mechanism of RCPDs target LNs imaging.This work has developed a new nanomaterial for targeted imaging of LNs,while the biological applications of CPDs have been expanded and deepened. 展开更多
关键词 Carbonized polymer dots Red/NIR emission LNs-targeting Lymphocyte homing
原文传递
Dual-emission carbonized polymer dots for ratiometric sensing and imaging of L-lysine and pH in live cell and zebrafish
19
作者 Xiaoxiao Hu Hongjing Wu +1 位作者 Qiang Zhang Feng Gao 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期374-380,共7页
It is highly desired to accurately and selectively detect and image intracellular L-lysine and pH in biological systems because they could act as the biomarkers in certain abnormal conditions and may give us a warning... It is highly desired to accurately and selectively detect and image intracellular L-lysine and pH in biological systems because they could act as the biomarkers in certain abnormal conditions and may give us a warning of the occurrence of diseases.It has been attracted more focuses to design new ratiometric fluorescent probe for monitoring L-lysine and pH to improve detection accuracy.Carbonized polymer dots(CPDs),which possess carbon/polymer hybrid structure rather than pure carbon structure and constitute of a carbon core and large amounts of functional groups/polymer chains on the surface,rise up as a new type of fluorescent nanomaterials and especially display many advantages for bioanalysis.In this study,o-phenylenediamine(o-PD)and poly(styrene-co-maleic anhydride)(PSMA)are used as the precursors to synthesize the desired CPDs through one-step hydrothermal amide method.The prepared CPDs display two well-resolved fluorescence emission bands,i.e.,a very weak emission centered at 470 nm in blue region and a strong emission centered at 558 nm in yellow region.It is found that the two emissions are both responsive to L-lysine based on the surface passivation mechanism,whereas,only the yellow emission is responsive to pH due to the protonation/deprotonation process of the amino groups.Based on the different responsive behaviors,ratiometric detection and imaging of L-lysine and pH are achieved.The prepared ratiometric CPDs probe is successfully applied for L-lysine and pH sensing and imaging at two emission channels in live cell and zebrafish with satisfactory results. 展开更多
关键词 Carbonized polymer dots(CPDs) Ratiometric fluorescent probe L-LYSINE pH Dual-emission
原文传递
Highly efficient solid-state luminescence of carbonized polymer dots without matrix
20
作者 Rui Li Junjun Liu +3 位作者 Chunlei Xia Tanglue Feng Zhicheng Zhu Bai Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期412-416,共5页
Development of high-performance solid state luminescent carbon-based nanomaterials remains challenging.Here,strong blue-green fluorescent carbonized polymer dots(CPDs)from o-aminobenzenethiol and thiosalicylic acid(o ... Development of high-performance solid state luminescent carbon-based nanomaterials remains challenging.Here,strong blue-green fluorescent carbonized polymer dots(CPDs)from o-aminobenzenethiol and thiosalicylic acid(o ABT-TSA-CPDs)with an absolute photoluminescence quantum yield(PLQY)of 76%in solid state without matrix were synthesized.Through adjusting the reaction temperature and time,the PL centers were proved to be carbon core state and surface state associated to carbonyl group which was the source of strong fluorescence emission in solid state.The mechanism of the unique phenomenon of enhanced emission from ethanol solution(PLQY=7%)to powder(PLQY=76%)was investigated by analyzing the chemical properties and structures of o ABT-TSA-CPDs at different temperatures and o ABT-TSACPDs/PVC composites,and was confirmed as fixation of PL centers. 展开更多
关键词 Carbonized polymer dots Solid-state fluorescence MATRIX-FREE High performance Enhanced photoluminescence quantum yield
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部