Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of ...Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conse...We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.展开更多
This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infini...This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.展开更多
Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which kee...Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equation...According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equations of motion of the non-conservative nonholonomic system based upon the generalized variational principle of Herglotz type are given, and the exact invariant for the non-conservative nonholonomic system is introduced. Secondly, a new type of adiabatic invariant for the system under the action of a small perturbation is obtained. Thirdly, the inverse theorem of the adiabatic invariant is given. Finally, an example is given.展开更多
We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Her...We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.展开更多
Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path...Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path integral quantization. The path integral is obtained as integration over the canonical phase space coordinates, which contains the generalized coordinate q and the generalized momentum p. One illustrative example is considered to explain the application of our formalism.展开更多
基金support via NSF grants NSF-19-04774,NSF-AST-2009776,NASA-2020-1241NASA grant 80NSSC22K0628.DSB+3 种基金HK acknowledge support from a Vajra award,VJR/2018/00129a travel grant from Notre Dame Internationalsupport via AFOSR grant FA9550-20-1-0055NSF grant DMS-2010107.
文摘Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
基金support by Fondazione Cariplo and Fondazione CDP(Italy)under the project No.2022-1895.
文摘We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472040, 10572021 and 10772025)the Outstanding Young Talents Training Found of Liaoning Province of China (Grant No 3040005)
文摘This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.
文摘Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212,11272227,and 10972151)the Innovation Program for Postgraduade in Higher Education Institutions of Jiangsu Province,China(Grant No.KYCX18_2548)
文摘According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equations of motion of the non-conservative nonholonomic system based upon the generalized variational principle of Herglotz type are given, and the exact invariant for the non-conservative nonholonomic system is introduced. Secondly, a new type of adiabatic invariant for the system under the action of a small perturbation is obtained. Thirdly, the inverse theorem of the adiabatic invariant is given. Finally, an example is given.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03030000)National Natural Science Foundation of China(Nos.11905253 and U19A20113)。
文摘We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.
文摘Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path integral quantization. The path integral is obtained as integration over the canonical phase space coordinates, which contains the generalized coordinate q and the generalized momentum p. One illustrative example is considered to explain the application of our formalism.