A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is com...A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.展开更多
In this paper, a new wireless measuring method for colorless liquid level measurement was presented, based on latest CLC100 liquid level sensor and Powercast wireless sensor development kit. The wireless system is div...In this paper, a new wireless measuring method for colorless liquid level measurement was presented, based on latest CLC100 liquid level sensor and Powercast wireless sensor development kit. The wireless system is divided into two parts, level measurement and data transmission part as well as data receiving and display part. First part included the capacitive liquid level sensor CLC100 and the wireless senor board. CLC100 sensor was used for liquid level measurement. Wireless sensor kit from Powercast Corporation included one wireless sensor board, which was used for signal transmission. A built-in PIC microcontroller was embedded in the transmission module, for the purpose of processing and data transmitting. Due to CLC100 sensor’s output voltage exceeding the sensor board’s input limitation, a voltage convertor was designed to connect the sensor and the wireless sensor board. The final results were voltages corresponding to the liquid level, and were processed by an independent PIC development board, and then sent to PC’s hyper terminal via serial-port by this PIC microcontroller. Experiments showed that this wireless sensor node prototype worked well.展开更多
Utilizing the technology of Ultrasonic wave,relevant test arithmetic and the PC to carry on monitoring,controlling and cen-tralized management of the liquid-level in the liquid container. It can prevent from keeping i...Utilizing the technology of Ultrasonic wave,relevant test arithmetic and the PC to carry on monitoring,controlling and cen-tralized management of the liquid-level in the liquid container. It can prevent from keeping in touch with the examined liquid,not only has increased the continuous working time of the system greatly,simplifying maintenance of the sensor conveniently,can also realize overhauling in producing and boost the productivity and management level. The working principle,hardware structure of the instrument and the design method are presented,and the selection of sensor and MCU is discussed in detail in this paper. MCU are used to control the emission and receiving. Then the liquid-level are calculated,which makes the design more intelligent.展开更多
Self-powered sensors are highly sought for wireless sensing applications in space exploration,industries,and environmental monitoring,etc.However,most current self-powered sensor technologies are based on the multiple...Self-powered sensors are highly sought for wireless sensing applications in space exploration,industries,and environmental monitoring,etc.However,most current self-powered sensor technologies are based on the multiple energy conversion routine:energy collection,rectification,energy storage,and power management before it can be used for sensor systems,leading to exceptionally low energy utilization efficiency and very short periods of wireless sensing operation with majority of information lost.Here,we propose a triboelectric nanogenerator(TENG)based fully self-powered instantaneous and real-time wireless sensor system which does not contain electronic devices and microchips,but the passive components only.An innovative cylindrical capacitive-type liquid level sensor is also proposed and is then integrated into the wireless sensor system for monitoring liquid levels or identifying substance of the liquids.This sensor system can convert pulsed voltage output of the TENG into sinusoidal signal with a resonant frequency containing the sensing information and is transmitted to the receiver in distance in real-time.The maximum transmission distance of the sensor system could reach 1.5 m for a 10 cm diameter magnetic-core coil pair.The wireless sensor system exhibited excellent stability and excellent linearity with a sensitivity of 4.63 kHz/cm,and demonstrated its great application potential for the self-powered liquid level monitoring.展开更多
In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing ...In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing two opposite sides of a composite multimode-single-mode-multimode fiber structure using a CO;laser.The method improves the sensitivity of the sensor to external environment.Based on the simulation calculation,a liquid level sensor with a length of 3 mm is designed.The experimental transmission spectrum agrees well with the simulation result.The experimental results show that the sensitivity reaches 7080 pm/mm in the liquid level range of 0-1400 μm in water.The temperature sensitivity is24.52 pm/℃ in the range of 20℃-90℃.Due to the ultra-high sensitivity,good linearity,and compact structure,the SSC-LPFG has potential application in the field of high-Drecision liquid level measurement.展开更多
文摘A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.
文摘In this paper, a new wireless measuring method for colorless liquid level measurement was presented, based on latest CLC100 liquid level sensor and Powercast wireless sensor development kit. The wireless system is divided into two parts, level measurement and data transmission part as well as data receiving and display part. First part included the capacitive liquid level sensor CLC100 and the wireless senor board. CLC100 sensor was used for liquid level measurement. Wireless sensor kit from Powercast Corporation included one wireless sensor board, which was used for signal transmission. A built-in PIC microcontroller was embedded in the transmission module, for the purpose of processing and data transmitting. Due to CLC100 sensor’s output voltage exceeding the sensor board’s input limitation, a voltage convertor was designed to connect the sensor and the wireless sensor board. The final results were voltages corresponding to the liquid level, and were processed by an independent PIC development board, and then sent to PC’s hyper terminal via serial-port by this PIC microcontroller. Experiments showed that this wireless sensor node prototype worked well.
文摘Utilizing the technology of Ultrasonic wave,relevant test arithmetic and the PC to carry on monitoring,controlling and cen-tralized management of the liquid-level in the liquid container. It can prevent from keeping in touch with the examined liquid,not only has increased the continuous working time of the system greatly,simplifying maintenance of the sensor conveniently,can also realize overhauling in producing and boost the productivity and management level. The working principle,hardware structure of the instrument and the design method are presented,and the selection of sensor and MCU is discussed in detail in this paper. MCU are used to control the emission and receiving. Then the liquid-level are calculated,which makes the design more intelligent.
基金funded by National Key R&D Program of China(No.2018YFB2002500)Zhejiang Province Key R&D programs(Nos.2021C05004 and 2020C03039)+2 种基金NSFC(Nos.61974037,61904042,and 61801158)Natural Science Foundation of Zhejiang(No.LY21F040006)Zhejiang University Education Foundation Global Partnership.
文摘Self-powered sensors are highly sought for wireless sensing applications in space exploration,industries,and environmental monitoring,etc.However,most current self-powered sensor technologies are based on the multiple energy conversion routine:energy collection,rectification,energy storage,and power management before it can be used for sensor systems,leading to exceptionally low energy utilization efficiency and very short periods of wireless sensing operation with majority of information lost.Here,we propose a triboelectric nanogenerator(TENG)based fully self-powered instantaneous and real-time wireless sensor system which does not contain electronic devices and microchips,but the passive components only.An innovative cylindrical capacitive-type liquid level sensor is also proposed and is then integrated into the wireless sensor system for monitoring liquid levels or identifying substance of the liquids.This sensor system can convert pulsed voltage output of the TENG into sinusoidal signal with a resonant frequency containing the sensing information and is transmitted to the receiver in distance in real-time.The maximum transmission distance of the sensor system could reach 1.5 m for a 10 cm diameter magnetic-core coil pair.The wireless sensor system exhibited excellent stability and excellent linearity with a sensitivity of 4.63 kHz/cm,and demonstrated its great application potential for the self-powered liquid level monitoring.
基金supported by the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS) (Nos. U1831115, U2031132, U1931206, and U2031130)Natural Science Foundation of Heilongjiang Province (No. ZD2019H003)Fundamental Research Funds for the Central Universities to the Harbin Engineering University
文摘In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing two opposite sides of a composite multimode-single-mode-multimode fiber structure using a CO;laser.The method improves the sensitivity of the sensor to external environment.Based on the simulation calculation,a liquid level sensor with a length of 3 mm is designed.The experimental transmission spectrum agrees well with the simulation result.The experimental results show that the sensitivity reaches 7080 pm/mm in the liquid level range of 0-1400 μm in water.The temperature sensitivity is24.52 pm/℃ in the range of 20℃-90℃.Due to the ultra-high sensitivity,good linearity,and compact structure,the SSC-LPFG has potential application in the field of high-Drecision liquid level measurement.