The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. T...The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la...Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.展开更多
Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry a...Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.展开更多
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti...The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.展开更多
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It ...The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It has been found that the honeycomb seal leakage during a rotor speed of 6000 r/min decreases by about 4.8 percent as compared with that during a rotor speed of 0 r/min. At a radial clearance of 0.12 mm the honeycomb seal with a cell size of 1.6 mm enjoys the best sealing performance. The leakage flow of the labyrinth seal with a radial clearance of 0.06 mm is smaller than that of the honeycomb seals.展开更多
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak...The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.展开更多
The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing su...The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing surface, but the mating metal surface only had slight abrasion. A specialized test rig was designed for wear research and failure analysis of the sealing ring. The composition analyses of the ring material, working conditions and wear surface characteristics by visual inspection and tribological properties as well as microscopic analysis with scanning electron microscope was performed to determine the wear mechanism and failure causes. Results revealed that the wear of PTFE composites was characterized by abrasion and adhesion after a certain duration testing, and the wear mechanism changed to thermal fatigue and abrasive wear in the stage of intense wear. The thermal deformation and fatigue were primarily responsible for the rapid wear of the PTFE composites for the sealing rings.展开更多
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se...The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.展开更多
The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Ko...The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa.展开更多
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, re...Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..展开更多
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th...Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.展开更多
Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the ...Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.展开更多
The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the u...The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.展开更多
We investigated the role of hydrological features, such as water masses, fronts, eddies, and sea ice, in affecting the distribution of upper trophic level species in the Scotia Sea region during autumn. On board RV Po...We investigated the role of hydrological features, such as water masses, fronts, eddies, and sea ice, in affecting the distribution of upper trophic level species in the Scotia Sea region during autumn. On board RV Polarstern, we performed 365 30-min strip transects recording seabirds and marine mammals along the North Scotia Ridge and the South Sandwich Trench in March--April 2013. Among the 7 identified cetacean species recorded, the humpback whale Megaptera novaeangliae was the most abundant baleen whale (40 individuals), and noteworthy were sightings of six southern right whales Eubalaena australis. Pinnipeds (3 species, 1650 individuals) were dominated by Antarctic fur seal Arctocephalus gazella (99%), and seabirds (36 species, 18900 individuals) by Antarctic prion Pachyptila desolata (-50%). The distribution of these top predators was highly patchy with the majority of observations concentrated in a few counts. This heterogeneity is likely a result of prey availability, and we discuss how hydrological features may have caused the patchiness.展开更多
For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple for...For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.展开更多
In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and exper...In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.展开更多
基金Supported by the National Natural Science Foundation of China ( No. 50635010 ) and the National Key Basic Research Program of China (2012CB026000).
文摘The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by China Postdoctoral Science Foundation (Grant No. 20070410323)Jiangsu Provincial Planned Projects for Postdoctoral Research Funds of China (Grant No. 0701001C)Jiangsu Provincial Planned Projects for Fostering Talents of Six Scientific Fields of China (Grant No. 07-D-027)
文摘Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.
文摘Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.
基金supported by National Natural Science Foundation of China (Grant No. 50776021)Doctoral Fund of Ministry of Education of China (Grant No. 20092304110004)
文摘The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金National Emphases Basis Research Development and Programming Project(G1999022304)
文摘The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It has been found that the honeycomb seal leakage during a rotor speed of 6000 r/min decreases by about 4.8 percent as compared with that during a rotor speed of 0 r/min. At a radial clearance of 0.12 mm the honeycomb seal with a cell size of 1.6 mm enjoys the best sealing performance. The leakage flow of the labyrinth seal with a radial clearance of 0.06 mm is smaller than that of the honeycomb seals.
基金This project is supported by Provincial Natural Science Foundation of Educa-tion Office of Jiangsu, China (No. 04KJD530090)Innovating Founda-tion for Doctoral Dissertation of Nanjing University of Technology, China (No. BSCX200510).
文摘The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.
基金Funded by the National Natural Science Foundation of China(Nos.51005104, 51105288)Jiangsu Province Basic Research Program(Natural Science Foundation) (No.BK2011477)+1 种基金China Postdoctoral Science Foundation(No.20110491355)Young Excellent Teachers Training Project of Jiangsu University
文摘The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing surface, but the mating metal surface only had slight abrasion. A specialized test rig was designed for wear research and failure analysis of the sealing ring. The composition analyses of the ring material, working conditions and wear surface characteristics by visual inspection and tribological properties as well as microscopic analysis with scanning electron microscope was performed to determine the wear mechanism and failure causes. Results revealed that the wear of PTFE composites was characterized by abrasion and adhesion after a certain duration testing, and the wear mechanism changed to thermal fatigue and abrasive wear in the stage of intense wear. The thermal deformation and fatigue were primarily responsible for the rapid wear of the PTFE composites for the sealing rings.
基金Supported by National Key Basic Research Program of China(973Program,Grant No.2012CB026003)National Science and Technology Major Project of China(Grant No.ZX06901)
文摘The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
文摘The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa.
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
基金This project is supported by National Natural Science Foundation of China(No.50005019).
文摘Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..
基金Supported by China Postdoctoral Science Foundation(Grant No.2017M621458)National Science and Technology Support Plan Projects(Grant No.2015BAA08B02)National Natural Science Foundation of China(Grant No.11632011),National Natural Science Foundation of China(Grant No.11372183)
文摘Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.
基金supported by National Natural Science Foundation of China (Grant No. 50675027)
文摘Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.
文摘The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.
文摘We investigated the role of hydrological features, such as water masses, fronts, eddies, and sea ice, in affecting the distribution of upper trophic level species in the Scotia Sea region during autumn. On board RV Polarstern, we performed 365 30-min strip transects recording seabirds and marine mammals along the North Scotia Ridge and the South Sandwich Trench in March--April 2013. Among the 7 identified cetacean species recorded, the humpback whale Megaptera novaeangliae was the most abundant baleen whale (40 individuals), and noteworthy were sightings of six southern right whales Eubalaena australis. Pinnipeds (3 species, 1650 individuals) were dominated by Antarctic fur seal Arctocephalus gazella (99%), and seabirds (36 species, 18900 individuals) by Antarctic prion Pachyptila desolata (-50%). The distribution of these top predators was highly patchy with the majority of observations concentrated in a few counts. This heterogeneity is likely a result of prey availability, and we discuss how hydrological features may have caused the patchiness.
文摘For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.
文摘In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.