期刊文献+
共找到810篇文章
< 1 2 41 >
每页显示 20 50 100
Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
1
作者 Weiguo Huang Jun Wang +2 位作者 Guifu Du Shuyou Wu Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期258-271,共14页
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea... As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Gearbox fault diagnosis Balance model sparse decomposition non-convex regularization
下载PDF
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
2
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification non-convex sparse regularization Alternating direction method of multipliers Proximal operators
下载PDF
Anomaly detection in traffic surveillance with sparse topic model 被引量:4
3
作者 XIA Li-min HU Xiang-jie WANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2245-2257,共13页
Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events intera... Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern.In this work,a novel unsupervised method based on sparse topic model was proposed to capture motion patterns and detect anomalies in traffic surveillance.scale-invariant feature transform(SIFT)flow was used to improve the dense trajectory in order to extract interest points and the corresponding descriptors with less interference.For the purpose of strengthening the relationship of interest points on the same trajectory,the fisher kernel method was applied to obtain the representation of trajectory which was quantized into visual word.Then the sparse topic model was proposed to explore the latent motion patterns and achieve a sparse representation for the video scene.Finally,two anomaly detection algorithms were compared based on video clip detection and visual word analysis respectively.Experiments were conducted on QMUL Junction dataset and AVSS dataset.The results demonstrated the superior efficiency of the proposed method. 展开更多
关键词 motion pattern sparse topic model SIFT flow dense trajectory fisher kernel
下载PDF
DOA ESTIMATION USING A SPARSE LINEAR MODEL BASED ON EIGENVECTORS 被引量:2
4
作者 Wang Libin Cui Chen Li Pengfei 《Journal of Electronics(China)》 2011年第4期496-502,共7页
To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse lin... To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations. 展开更多
关键词 Direction-Of-Arrival(DOA) estimation sparse linear model Eigen-value decomposition sparse solution finding
下载PDF
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:13
5
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera... Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
下载PDF
INTERPOLATION TECHNIQUE FOR SPARSE DATA BASED ON INFORMATION DIFFUSION PRINCIPLE-ELLIPSE MODEL 被引量:1
6
作者 张韧 黄志松 +1 位作者 李佳讯 刘巍 《Journal of Tropical Meteorology》 SCIE 2013年第1期59-66,共8页
Addressing the difficulties of scattered and sparse observational data in ocean science,a new interpolation technique based on information diffusion is proposed in this paper.Based on a fuzzy mapping idea,sparse data ... Addressing the difficulties of scattered and sparse observational data in ocean science,a new interpolation technique based on information diffusion is proposed in this paper.Based on a fuzzy mapping idea,sparse data samples are diffused and mapped into corresponding fuzzy sets in the form of probability in an interpolation ellipse model.To avoid the shortcoming of normal diffusion function on the asymmetric structure,a kind of asymmetric information diffusion function is developed and a corresponding algorithm-ellipse model for diffusion of asymmetric information is established.Through interpolation experiments and contrast analysis of the sea surface temperature data with ARGO data,the rationality and validity of the ellipse model are assessed. 展开更多
关键词 INFORMATION DIFFUSION INTERPOLATION algorithm sparse data ELLIPSE model
下载PDF
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
7
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic Time Series with sparse Hard-Cut EM Learning of the Gaussian Process Mixture model EM SHC
下载PDF
Traffic danger detection by visual attention model of sparse sampling
8
作者 夏利民 刘涛 谭论正 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3916-3924,共9页
A method to detect traffic dangers based on visual attention model of sparse sampling was proposed. The hemispherical sparse sampling model was used to decrease the amount of calculation which increases the detection ... A method to detect traffic dangers based on visual attention model of sparse sampling was proposed. The hemispherical sparse sampling model was used to decrease the amount of calculation which increases the detection speed. Bayesian probability model and Gaussian kernel function were applied to calculate the saliency of traffic videos. The method of multiscale saliency was used and the final saliency was the average of all scales, which increased the detection rates extraordinarily. The detection results of several typical traffic dangers show that the proposed method has higher detection rates and speed, which meets the requirement of real-time detection of traffic dangers. 展开更多
关键词 traffic dangers visual attention model sparse sampling Bayesian probability model multiscale saliency
下载PDF
Stochastic Models to Mitigate Sparse Sensor Attacks in Continuous-Time Non-Linear Cyber-Physical Systems
9
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computers, Materials & Continua》 SCIE EI 2023年第9期3189-3218,共30页
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n... Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios. 展开更多
关键词 Cyber-physical systems sparse sensor attack non-linear models stochastic models security
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
10
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection 被引量:29
11
作者 DENG Xiaogang TIAN Xuemin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期163-170,共8页
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de... Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance. 展开更多
关键词 nonlinear locality preserving projection kernel trick sparse model fault detection
下载PDF
Joint Multi-Domain Channel Estimation Based on Sparse Bayesian Learning for OTFS System 被引量:7
12
作者 Yong Liao Xue Li 《China Communications》 SCIE CSCD 2023年第1期14-23,共10页
Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next gene... Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm. 展开更多
关键词 OTFS sparse Bayesian learning basis expansion model channel estimation
下载PDF
Research on image sentiment analysis technology based on sparse representation 被引量:3
13
作者 Xiaofang Jin Yinan Wu +1 位作者 Ying Xu Chang Sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第3期354-368,共15页
Many methods based on deep learning have achieved amazing results in image sentiment analysis.However,these existing methods usually pursue high accuracy,ignoring the effect on model training efficiency.Considering th... Many methods based on deep learning have achieved amazing results in image sentiment analysis.However,these existing methods usually pursue high accuracy,ignoring the effect on model training efficiency.Considering that when faced with large-scale sentiment analysis tasks,the high accuracy rate often requires long experimental time.In view of the weakness,a method that can greatly improve experimental efficiency with only small fluctuations in model accuracy is proposed,and singular value decomposition(SVD)is used to find the sparse feature of the image,which are sparse vectors with strong discriminativeness and effectively reduce redundant information;The authors propose the Fast Dictionary Learning algorithm(FDL),which can combine neural network with sparse representation.This method is based on K-Singular Value Decomposition,and through iteration,it can effectively reduce the calculation time and greatly improve the training efficiency in the case of small fluctuation of accuracy.Moreover,the effectiveness of the proposed method is evaluated on the FER2013 dataset.By adding singular value decomposition,the accuracy of the test suite increased by 0.53%,and the total experiment time was shortened by 8.2%;Fast Dictionary Learning shortened the total experiment time by 36.3%. 展开更多
关键词 FDL image sentiment analysis model efficiency sparse representation SVD
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
14
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix L1-norm L2 norm latent factor model recommender system smooth L1-norm
下载PDF
Sparse Solutions of Mixed Complementarity Problems 被引量:1
15
作者 Peng Zhang Zhensheng Yu 《Journal of Applied Mathematics and Physics》 2020年第1期10-22,共13页
In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for t... In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for the original problem and design an extragradient thresholding algorithm (ETA) to solve the regularized model. Furthermore, we prove that any cluster point of the sequence generated by ETA is a solution of MCP. Finally, numerical experiments show that the ETA algorithm can effectively solve the l1 regularized projection minimization model and obtain the sparse solution of the mixed complementarity problem. 展开更多
关键词 Mixed Complementarity Problem sparse Solution L1 REGULARIZED PROJECTION MINIMIZATION model Extragradient THRESHOLDING Algorithm
下载PDF
Multi-Layer Deep Sparse Representation for Biological Slice Image Inpainting
16
作者 Haitao Hu Hongmei Ma Shuli Mei 《Computers, Materials & Continua》 SCIE EI 2023年第9期3813-3832,共20页
Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontroll... Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images. 展开更多
关键词 Deep sparse representation image inpainting convolutional sparse modelling deep neural network
下载PDF
A Recommendation Method for Highly Sparse Dataset Based on Teaching Recommendation Factorization Machines
17
作者 Dunhong Yao Shijun Li +1 位作者 Ang Li Yu Chen 《Computers, Materials & Continua》 SCIE EI 2020年第9期1959-1975,共17页
There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses.To solve the practical problem,we firstly give a series of normalization models for defining the key attributes of ... There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses.To solve the practical problem,we firstly give a series of normalization models for defining the key attributes of teachers’professional foundation,course difficulty coefficient,and comprehensive evaluation of teaching.Then,we define a partial weight function to calculate the key attributes,and obtain the partial recommendation values.Next,we construct a highly sparse Teaching Recommendation Factorization Machines(TRFMs)model,which takes the 5-tuples relation including teacher,course,teachers’professional foundation,course difficulty,teaching evaluation as the feature vector,and take partial recommendation value as the recommendation label.Finally,we design a novel Top-N excellent teacher recommendation algorithm based on TRFMs by course classification on the highly sparse dataset.Experimental results show that the proposed TRFMs and recommendation algorithm can accurately realize the recommendation of excellent teachers on a highly sparse historical teaching dataset.The recommendation accuracy is superior to that of the three-dimensional tensor decomposition model algorithm which also solves sparse datasets.The proposed method can be used as a new recommendation method applied to the teaching arrangements in all kinds of schools,which can effectively improve the teaching quality. 展开更多
关键词 Highly sparse dataset normalized models teaching recommendation factorization machines excellent teacher recommendation
下载PDF
L1/2 -Regularized Quantile Method for Sparse Phase Retrieval
18
作者 Si Shen Jiayao Xiang +1 位作者 Huijuan Lv Ailing Yan 《Open Journal of Applied Sciences》 CAS 2022年第12期2135-2151,共17页
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho... The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise. 展开更多
关键词 sparse Phase Retrieval Nonconvex Optimization Alternating Direction Method of Multipliers Quantile Regression model ROBUSTNESS
下载PDF
Dynamic Global-Principal Component Analysis Sparse Representation for Distributed Compressive Video Sampling
19
作者 武明虎 陈瑞 +1 位作者 李然 周尚丽 《China Communications》 SCIE CSCD 2013年第5期20-29,共10页
Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dyna... Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dynamic global-Principal Component Analysis (PCA) sparse representation algorithm for video based on the sparse-land model and nonlocal similarity. First, grouping by matching is realized at the decoder from key frames that are previously recovered. Second, we apply PCA to each group (sub-dataset) to compute the principle components from which the sub-dictionary is constructed. Finally, the non-key frames are reconstructed from random measurement data using a Compressed Sensing (CS) reconstruction algorithm with sparse regularization. Experimental results show that our algorithm has a better performance compared with the DCT and K-SVD dictionaries. 展开更多
关键词 distributed video compressive sampling global-PCA sparse representation sparseland model non-local similarity
下载PDF
基于非线性动力学稀疏辨识的涡致振动系统建模
20
作者 季廷炜 王亮 +2 位作者 谢芳芳 张鑫帅 郑畅东 《浙江大学学报(工学版)》 北大核心 2025年第2期402-412,432,共12页
以二维和三维圆柱涡致振动(VIV)系统为研究对象,通过非线性动力学稀疏辨识(SINDy)的方法,识别VIV系统的结构响应模型和尾流振荡模型.对模型进行验证和分析,得到VIV系统的流固耦合模型,实现不同缩减速度下圆柱VIV位移和速度响应的预测.... 以二维和三维圆柱涡致振动(VIV)系统为研究对象,通过非线性动力学稀疏辨识(SINDy)的方法,识别VIV系统的结构响应模型和尾流振荡模型.对模型进行验证和分析,得到VIV系统的流固耦合模型,实现不同缩减速度下圆柱VIV位移和速度响应的预测.结果表明,采用SINDy算法,识别了带有附加阻尼的二维VIV系统的结构响应模型.该模型与流固耦合系统的动力学特征表现出明显的规律:当涡致振动系统处于锁定(lock-in)区域时,附加阻尼随缩减速度变大而基本保持不变,结构的无量纲最大振幅保持在较高水平;当涡致振动系统处于非锁定区域时,附加阻尼随缩减速度变大而呈现线性下降的特征,结构的无量纲振幅保持在较低水平.基于SINDy方法识别的二维VIV系统流固耦合模型和三维VIV系统结构响应模型有较好的预测能力,其中二维VIV系统流固耦合模型有一定的泛化能力.模型预测值能够表征原系统的运动特征,对二维VIV系统结构位移响应预测的相对误差小于6%,结构速度响应预测的相对误差小于5%,对三维VIV系统结构位移和速度响应预测的相对误差小于4%. 展开更多
关键词 稀疏辨识 涡致振动 流固耦合 降阶模型 非线性动力学
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部