期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
SAR image de-noising based on texture strength and weighted nuclear norm minimization 被引量:1
1
作者 Jing Fang Shuaiqi Liu +1 位作者 Yang Xiao Hailiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期807-814,共8页
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl... As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality. 展开更多
关键词 synthetic aperture radar(SAR) image de-noising blind de-noising weighted nuclear norm minimization(WNNM) texture strength
下载PDF
Weighted Nuclear Norm Minimization-Based Regularization Method for Image Restoration
2
作者 Yu-Mei Huang Hui-Yin Yan 《Communications on Applied Mathematics and Computation》 2021年第3期371-389,共19页
Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image ... Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image regularization methods.In recent years,matrix low-rank approximation has been successfully introduced in the image denoising problem and significant denoising effects have been achieved.Low-rank matrix minimization is an NP-hard problem and it is often replaced with the matrix’s weighted nuclear norm minimization(WNNM).The assumption that an image contains an extensive amount of self-similarity is the basis for the construction of the matrix low-rank approximation-based image denoising method.In this paper,we develop a model for image restoration using the sum of block matching matrices’weighted nuclear norm to be the regularization term in the cost function.An alternating iterative algorithm is designed to solve the proposed model and the convergence analyses of the algorithm are also presented.Numerical experiments show that the proposed method can recover the images much better than the existing regularization methods in terms of both recovered quantities and visual qualities. 展开更多
关键词 Image restoration Regularization method weighted nuclear norm Alternating iterative method
下载PDF
Double Transformed Tubal Nuclear Norm Minimization for Tensor Completion
3
作者 TIAN Jialue ZHU Yulian LIU Jiahui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期166-174,共9页
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ... Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods. 展开更多
关键词 double transformed tubal nuclear norm low tubal-rank non-convex optimization tensor factorization tensor completion
下载PDF
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
4
作者 Jian Lu Yuting Ye +2 位作者 Yiqiu Dong Xiaoxia Liu Yuru Zou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1171-1191,共21页
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim... In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise. 展开更多
关键词 Image denoising weighted nuclear norm minimization l 1-data-fidelity term Low rank analysis Impulse noise
原文传递
张量学习诱导的多视图谱聚类 被引量:1
5
作者 陈曼笙 蔡晓莎 +3 位作者 林家祺 王昌栋 黄栋 赖剑煌 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期52-68,共17页
现有的方法将通过张量奇异值分解(t-SVD)正则化的低秩表示应用到多视图子空间聚类中,取得了令人印象深刻的聚类性能.然而,它们都具有以下两个共同的缺点:(1)他们专注于探索样本之间的关系以构建表征,然后将其堆叠为张量,其计算复杂度至... 现有的方法将通过张量奇异值分解(t-SVD)正则化的低秩表示应用到多视图子空间聚类中,取得了令人印象深刻的聚类性能.然而,它们都具有以下两个共同的缺点:(1)他们专注于探索样本之间的关系以构建表征,然后将其堆叠为张量,其计算复杂度至少为O(n2logn);(2)他们总是直接在整合的表征上运行标准的谱聚类算法,而忽略了不同表征对最终聚类结果的先验知识.为了解决这些问题,本文提出了一种新颖的张量学习诱导的多视图谱聚类(TLIMSC)方法,其中同时探索了空间聚类结构和互补信息.具体来说,该方法将关联样本和簇关系的多视图谱嵌入表示堆叠成张量,计算复杂度最终变为O(n logn).然后,将学习到的带有不同自适应置信度的表征与最终的一致聚类结果联系起来.在五个数据集上的广泛实验证明了TLIMSC所具有的有效性和高效性. 展开更多
关键词 多视图聚类 加权张量核范数 谱嵌入表征 自适应置信度
下载PDF
基于改进加权核范数最小化的图像去噪算法研究
6
作者 史凯特 孙浩东 +4 位作者 董秀芬 马鹏阁 漆召兵 张亚平 秦晓科 《电光与控制》 CSCD 北大核心 2024年第7期48-52,共5页
针对彩色图像的高斯噪声,在加权核范数最小化(WNNM)框架下,提出了一种对于彩色图像去噪的多信道(MC)优化模式。首先,选择多种类型噪声计算量,利用信道的冗余特性将RGB补丁连接起来,再引入权重矩阵以协调3种信道的图像保真性。把所提的MC... 针对彩色图像的高斯噪声,在加权核范数最小化(WNNM)框架下,提出了一种对于彩色图像去噪的多信道(MC)优化模式。首先,选择多种类型噪声计算量,利用信道的冗余特性将RGB补丁连接起来,再引入权重矩阵以协调3种信道的图像保真性。把所提的MC-WNNM模型转换成线性等式约束现象,并采用交替位置乘子法(ADMM)解决。每个变量更新步骤都具有其封闭解,并能保证收敛性。基于真实用于无人机目标识别的彩色图像添加噪声进行仿真实验,实验结果说明,该算法相较现有的BM3D方法及WNNM方法具有明显优势。 展开更多
关键词 图像去噪 高斯噪声 加权核范数最小化 交替方向乘子法
下载PDF
基于加权张量低秩约束的多视图谱聚类
7
作者 刘思慧 高全学 +1 位作者 宋伟 谢德燕 《计算机工程》 CSCD 北大核心 2024年第1期129-137,共9页
现有基于图的多视图聚类方法通常难以同时考虑不同视图的潜在高阶相关信息和每个视图内的全局几何结构,导致聚类性能受限。为此,提出一种基于加权张量低秩约束的多视图谱聚类方法(WTLR-MSC)。根据多视图数据构建概率转移矩阵,将所有的... 现有基于图的多视图聚类方法通常难以同时考虑不同视图的潜在高阶相关信息和每个视图内的全局几何结构,导致聚类性能受限。为此,提出一种基于加权张量低秩约束的多视图谱聚类方法(WTLR-MSC)。根据多视图数据构建概率转移矩阵,将所有的概率转移矩阵构建为三阶张量,并借助鲁棒主成分分析思想将其分解为目标张量和误差张量。使用加权张量核范数约束目标张量的旋转张量,利用奇异值先验信息准确挖掘多视图数据的潜在高阶相关信息,并利用核范数约束目标张量的每个正切片以刻画每个视图内的全局几何结构。基于此建立数学模型,并设计有效的求解算法。在BBCSport、BBC4View、COIL20、UCI Digits 4个常用数据集上的实验结果表明,WTLR-MSC较ERLRT、MCA~2M、MGL-WTNN等聚类方法的性能有显著提升,准确率、标准化互信息、F1值、精确率、召回率相较于次优方法最高提升约1.3、1.0、1.2、1.6和0.8个百分点,大幅增强了多视图聚类的稳健性。 展开更多
关键词 加权张量核范数 谱聚类 多视图谱聚类 图学习 张量低秩
下载PDF
基于低秩ADMM的超声图像复原方法
8
作者 苏大勇 丁熠 《信息与电脑》 2024年第14期80-82,共3页
本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Mult... 本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)高效求解,并通过实验结果验证了该方法的优越性。 展开更多
关键词 超声图像复原 低秩近似 加权核范数最小化 交替方向乘子法
下载PDF
Face Hallucination with Weighted Nuclear Norm Constraint 被引量:1
9
作者 TANG Songze LI Heng XIAO Liang 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期627-635,共9页
Face hallucination via patch-pairs leaning based methods has been wildly used in the past several years. Some position-patch based face hallucination methods have been proposed to improve the representation power of i... Face hallucination via patch-pairs leaning based methods has been wildly used in the past several years. Some position-patch based face hallucination methods have been proposed to improve the representation power of image patch and obtain the optimal regressive weighted vector. The rationale behind the position-patch based face hallucination is the fact that human face is always highly structured and consequently positioned and it plays an increasingly important role in the reconstruction. However, in the existing position-patch based methods,the probe image patch is usually represented as a linear combination of the corresponding patches of some training images, and the reconstruction residual is usually measured using the vector norm such as 1-norm and 2-norm.Since the vector norms neglect two-dimensional structures inside the residual, the final reconstruction performance is not very satisfactory. To cope with this problem, we present a weighted nuclear-norm constrained sparse coding(WNCSC) model for position-patch based face hallucination. In addition, an efficient algorithm for the WNCSC is developed using the alternating direction method of multipliers(ADMM) and the method of augmented Lagrange multipliers(ALM). The advantages of the proposed model are twofold: in order to fully make use of low-rank structure information of the reconstruction residual, the weighted nuclear norm is applied to measure the residual matrix, which is able to alleviate the bias between input patches and training data, and it is more robust than the Euclidean distance(2-norm); the more flexible selection method for rank components can determine the optimal combination weights and adaptively choose the relevant and nearest hallucinated neighbors. Finally, experimental results prove that the proposed method outperforms the related state-of-the-art methods in both quantitative and visual comparisons. 展开更多
关键词 face hallucination weighted nuclear norm position-patch
原文传递
基于联合加速近端梯度和对数加权核范数最小化的地震数据重建 被引量:2
10
作者 杨帆 王长鹏 +2 位作者 张春霞 张讲社 熊登 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2023年第5期1582-1592,共11页
由于地表障碍或经济限制,采样的地震数据通常是不完整的,因此地震数据重建是地震研究中的一个重要课题。本文提出一种基于联合加速近端梯度和对数加权核范数最小化的地震数据重建方法。首先通过纹理块算子对原始地震数据进行低秩预处理... 由于地表障碍或经济限制,采样的地震数据通常是不完整的,因此地震数据重建是地震研究中的一个重要课题。本文提出一种基于联合加速近端梯度和对数加权核范数最小化的地震数据重建方法。首先通过纹理块算子对原始地震数据进行低秩预处理,然后使用加速近端梯度算法对低秩地震数据进行初步重建,最后提出对数加权核范数算法,用该算法解决优化问题并重建缺失数据。合成地震数据和真实地震数据对比实验结果表明,相比于奇异值阈值、加权核范数以及基于最大化最小化框架的非凸对数和函数算法,本文算法的重建结果在定量和定性分析上均有提升:在40%缺失率合成数据集上的信噪比为26.1357 dB,重建误差为6.7894;在30%缺失率Mobil Avo Viking Graben Line 12数据集上的信噪比为17.2478 dB,重建误差为4.7625;在60%缺失率Netherlands F3数据集上的信噪比为26.0581 dB,重建误差为7.4641。 展开更多
关键词 地震数据重建 加速近端梯度 对数加权核范数 纹理块预处理
下载PDF
基于加权分类损失和核范数的领域自适应模型
11
作者 杜社林 黄炳赫 +2 位作者 李荣鹏 宋学力 肖玉柱 《计算机应用研究》 CSCD 北大核心 2023年第6期1734-1738,共5页
领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和... 领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和核范数的领域自适应模型。该模型使用带有伪标签的可信样本特征与带有真实标签的源域样本特征构建辅助域,在辅助域上设计加权分类损失函数,降低错误伪标签在训练过程中产生的影响;加入批量核范数最大化损失,提高决策边界处样本的分类准确率。在Office31、Office-Home、Image-CLEFDA基准数据集上与之前模型的对比实验表明,该模型有更高的精确度。 展开更多
关键词 领域自适应 加权分类损失 核范数 伪标签
下载PDF
WNNM参数模型及迭代判断机制优化的遥感影像去噪 被引量:1
12
作者 胡鹏程 卢献健 +2 位作者 唐诗华 张炎 熊祖雄 《遥感信息》 CSCD 北大核心 2023年第5期140-148,共9页
针对加权核范数最小化(weighted nuclear norm minimization,WNNM)算法经验参数多、无法适应遥感影像复杂降噪环境问题,提出利用遗传算法(genetic algorithm,GA)优化WNNM算法中的参数模型(非局部补丁搜索窗口、迭代步数、迭代变换参数)... 针对加权核范数最小化(weighted nuclear norm minimization,WNNM)算法经验参数多、无法适应遥感影像复杂降噪环境问题,提出利用遗传算法(genetic algorithm,GA)优化WNNM算法中的参数模型(非局部补丁搜索窗口、迭代步数、迭代变换参数)。首先,通过GA对WNNM参数模型中参数进行寻优;然后,在算法迭代计算中加入判断机制,当迭代为最优解之后跳出迭代循环;最后,利用优化后WNNM算法消除影像中高斯白噪声。通过灰度图像仿真实验和Landsat 8、GF-1遥感影像实验,以峰值信噪比(peak signal-to-noise ratio,PSNR)、结构相似度(structural similarity ratio,SSIM)作为评价指标,对该算法与其他算法处理结果进行对比分析。实验结果表明,在噪声密度不同的情况下,该算法的PSNR、SSIM均有所提升。总体上,该算法的遥感影像高斯白噪声的去噪效果优于其他经典去噪算法。 展开更多
关键词 高斯白噪声去噪 加权核范数最小化 遗传算法 参数模型 迭代
下载PDF
基于加权核范数与3D全变分的背景减除
13
作者 班颖 邵泽军 牛玉玲 《信息与电脑》 2023年第4期17-20,47,共5页
针对鲁棒主成分分析模型(Robust Principal Component Analysis,RPCA)一般将前景看作背景中存在的异常像素点,从而使得在复杂背景中前景检测精度下降的问题,提出一种基于加权核范数与3D全变分(3D-TV)的背景减除模型。该模型以RPCA为基础... 针对鲁棒主成分分析模型(Robust Principal Component Analysis,RPCA)一般将前景看作背景中存在的异常像素点,从而使得在复杂背景中前景检测精度下降的问题,提出一种基于加权核范数与3D全变分(3D-TV)的背景减除模型。该模型以RPCA为基础,利用加权核范数来约束背景的低秩性,考虑了不同奇异值对秩函数的影响,使其更接近实际背景的秩;然后利用3D-TV来约束前景的稀疏性,考虑了目标在时空上的连续性,有效抑制了复杂背景对前景提取造成的干扰。实验结果表明,与其他4种算法对比,所提模型的F值基本上是最优的,且能准确地分离图像中的背景和前景。 展开更多
关键词 背景减除 鲁棒主成分分析(RPCA) 加权核范数
下载PDF
结合加权核范数与3D全变分的目标检测
14
作者 班颖 田韵 邵泽军 《现代计算机》 2023年第11期9-15,共7页
针对现实复杂场景使目标检测精确度下降的问题,提出了一种结合加权核范数与3D全变分的目标检测模型。基于扩展的鲁棒主成分分析模型,首先将视频分解为低秩静态背景、稀疏平滑前景和稀疏动态背景,利用加权核范数对背景进行低秩约束,考虑... 针对现实复杂场景使目标检测精确度下降的问题,提出了一种结合加权核范数与3D全变分的目标检测模型。基于扩展的鲁棒主成分分析模型,首先将视频分解为低秩静态背景、稀疏平滑前景和稀疏动态背景,利用加权核范数对背景进行低秩约束,考虑了不同奇异值对秩函数的影响;为加强前景的时空连续性,利用3D-TV来约束运动目标,有效抑制了复杂背景的干扰作用。实验表明,所提算法检测运动目标的准确率较高,能有效抑制复杂背景的干扰作用。 展开更多
关键词 目标检测 鲁棒主成分分析 加权核范数 3D全变分 交替方向乘子法
下载PDF
基于非局部低秩约束的改进灵敏度编码重建算法
15
作者 潘婷 段继忠 《数据采集与处理》 CSCD 北大核心 2023年第1期193-208,共16页
灵敏度编码(Sensitivity encoding,SENSE)是一种应用广泛的并行磁共振成像(Magnetic resonance imaging,MRI)重建模型。目前已有的针对SENSE模型的改进方法的重建图像中依然有较多伪影,尤其在较高加速因子时很难重建出比较清晰的图像。... 灵敏度编码(Sensitivity encoding,SENSE)是一种应用广泛的并行磁共振成像(Magnetic resonance imaging,MRI)重建模型。目前已有的针对SENSE模型的改进方法的重建图像中依然有较多伪影,尤其在较高加速因子时很难重建出比较清晰的图像。因此,本文基于非局部低秩约束(Nonlocal low-rank,NLR),提出了一种改进的SENSE模型,称为NLR-SENSE。该模型使用加权核范数作为秩代理函数,并使用交替方向乘子法(Alternating direction multiplier method,ADMM)进行求解。仿真实验结果表明,与其他几种并行磁共振成像方法相比,NLR-SENSE方法在视觉比较和3个不同的客观指标上均表现优异,能有效提升重建图像的质量。 展开更多
关键词 图像重建 并行磁共振成像 非局部低秩 灵敏度编码 加权核范数 交替方向乘子法
下载PDF
基于加权RPCA的非局部图像去噪方法 被引量:8
16
作者 杨国亮 王艳芳 +1 位作者 丰义琴 鲁海荣 《计算机工程与设计》 北大核心 2015年第11期3035-3040,共6页
在分析核范数基础上,提出基于加权鲁棒主成分分析(WRPCA)的非局部去噪方法。将加权核范数引入鲁棒主成份分析模型,构建加权鲁棒主成份分析模型(WRPCA),采用增广拉格朗日乘子法对模型进行求解,将WRPCA用于图像去噪。根据图像的自相似性,... 在分析核范数基础上,提出基于加权鲁棒主成分分析(WRPCA)的非局部去噪方法。将加权核范数引入鲁棒主成份分析模型,构建加权鲁棒主成份分析模型(WRPCA),采用增广拉格朗日乘子法对模型进行求解,将WRPCA用于图像去噪。根据图像的自相似性,对噪声图像进行分块,通过块匹配法对图像块进行聚类,获得相似块组矩阵;通过加权鲁棒主成分分析(WRPCA)算法对相似块组矩阵进行低秩矩阵恢复。实验结果表明,无论对低噪声图像和高噪声图像,该方法去噪效果相比现有的经典算法都有一定提高。WRPCA算法对图像结构保持有很好效果,在保持图像纹理细节方面优于其它去噪算法。 展开更多
关键词 鲁棒主成分分析 加权核范数 低秩 图像去噪 自相似性
下载PDF
基于非局部相似和低秩矩阵逼近的SAR图像去噪 被引量:2
17
作者 赵杰 王配配 门国尊 《计算机科学》 CSCD 北大核心 2017年第S1期183-187,共5页
针对合成孔径雷达图像(Synthetic Aperture Radar,SAR)受斑点噪声影响的问题,提出了一种改进的基于非局部相似和低秩矩阵逼近的SAR图像去噪方法。首先对SAR图像进行对数变换,将图像的相干乘性噪声转化为加性噪声,然后预估计图像的全局... 针对合成孔径雷达图像(Synthetic Aperture Radar,SAR)受斑点噪声影响的问题,提出了一种改进的基于非局部相似和低秩矩阵逼近的SAR图像去噪方法。首先对SAR图像进行对数变换,将图像的相干乘性噪声转化为加性噪声,然后预估计图像的全局噪声方差,利用非局部相似性引入一种新的基于欧氏距离和判定系数的联合块匹配方式,在低秩模型下采用改进残余噪声方差估计的加权核范数最小化算法(Weighted Nuclear Norm Minimization,WNNM)逼近低秩矩阵,最终实现SAR图像的噪声抑制。实验结果表明,该方法不仅使得峰值信噪比等客观指标有了明显的改善,而且更好地保存了图像的局部结构,并实现了良好的主观视觉效果。 展开更多
关键词 SAR图像去噪 联合块匹配 非局部相似性 加权核范数最小化
下载PDF
基于噪声水平估计的加权核范数最小化噪声压制方法研究 被引量:3
18
作者 唐杰 张文征 +1 位作者 戚瑞轩 李聪 《石油物探》 EI CSCD 北大核心 2019年第5期734-740,749,共8页
随机噪声的存在会降低地震资料的信噪比,影响对有效信号尤其是不连续性信号的分析。尺度不变性噪声估计方法基于峰度值分布不随尺度变化,能够在复杂低噪声数据上较好地估计噪声水平;加权核范数最小化能够根据矩阵奇异值刻画数据差异,通... 随机噪声的存在会降低地震资料的信噪比,影响对有效信号尤其是不连续性信号的分析。尺度不变性噪声估计方法基于峰度值分布不随尺度变化,能够在复杂低噪声数据上较好地估计噪声水平;加权核范数最小化能够根据矩阵奇异值刻画数据差异,通过给定不同的权值,突显数据中重要的信息。为此研究了基于噪声水平估计的加权核范数最小化噪声压制方法,利用尺度不变性噪声估计方法得到随机噪声的噪声水平估计,并根据此估计值来归一化加权核范数最小化算法的保真项,继而对地震数据进行去噪处理。理论模型试验和实际数据应用结果表明,该方法能够根据噪声水平自适应地衰减地震数据中的随机噪声,并保持地震反射中的不连续性信息,实现对地震数据的盲去噪处理,为后期的构造解释、断层和断点识别、层位追踪、几何属性提取等提供良好的基础数据。 展开更多
关键词 随机噪声压制 加权核范数最小化 地震数据 奇异值 噪声估计 尺度不变性 自适应
下载PDF
基于NSST变换域WNNM和KAD算法的SAR图像去噪 被引量:2
19
作者 赵杰 王配配 《郑州大学学报(理学版)》 CAS 北大核心 2017年第2期72-77,共6页
针对合成孔径雷达图像(synthetic aperture radar,SAR)斑点噪声影响的问题,提出了一种基于非下采样剪切波变换域(non-subsample shearlet transform,NSST)加权核范数最小化(weighted nuclear norm minimization,WNNM)和核各向异性扩散(k... 针对合成孔径雷达图像(synthetic aperture radar,SAR)斑点噪声影响的问题,提出了一种基于非下采样剪切波变换域(non-subsample shearlet transform,NSST)加权核范数最小化(weighted nuclear norm minimization,WNNM)和核各向异性扩散(kernel anisotropic diffusion,KAD)的SAR图像去噪方法.首先预估计SAR图像的全局噪声方差,其次对SAR图像进行对数变换,将图像的相干斑乘性噪声转化为加性噪声,然后对SAR图像进行NSST变换分解,将图像分为低频分量和多个高频分量.对分解后的低频分量和高频分量分别用WNNM算法和KAD进行去噪处理,最后用处理后的结果进行NSST重构得到去噪图像.给出了该算法的详细实现过程,并把它与之前的WNNM算法和非下采样shearlet变换算法进行了比较.实验结果表明,峰值信噪比相较于WNNM算法提高了约0.3 d B,而且更好地保存了图像的局部结构,并实现了良好的主观视觉效果. 展开更多
关键词 合成孔径雷达图像去噪 非下采样剪切波变换 加权核范数最小化 核各向异性扩散
下载PDF
基于多线性权重核范数最小化的遥感图像去噪 被引量:1
20
作者 孔祥阳 徐保根 周杰 《机床与液压》 北大核心 2020年第12期184-190,208,共8页
传统的基于矢量或基于矩阵的遥感图像去噪方法在去噪过程中可能导致空间域和光谱域失真。为了提高去噪效果的同时尽量降低失真,提出了一种多线性加权核范数最小化方法。首先,考虑到遥感图像的谱连续性和按三模展开矩阵的相互依赖性,构... 传统的基于矢量或基于矩阵的遥感图像去噪方法在去噪过程中可能导致空间域和光谱域失真。为了提高去噪效果的同时尽量降低失真,提出了一种多线性加权核范数最小化方法。首先,考虑到遥感图像的谱连续性和按三模展开矩阵的相互依赖性,构建了一种多线性秩来建模遥感图像的空间和谱非局部相似性。然后,为了使该方法更易于处理,采用基于变量分裂的方法来解决此优化问题。实验结果表明:该方法在客观度量和主观视觉质量两个方面都较目前最先进的方法都有较大的提高。 展开更多
关键词 遥感图像去噪 加权核范数 交替方向最小化 峰值信噪比 结构相似性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部