Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The prob...Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.展开更多
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth...The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.展开更多
A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs...A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.展开更多
In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, inc...In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculat...Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.展开更多
The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access ...The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.展开更多
Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the ...Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.展开更多
Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV...Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV swarm non-cooperative game model based on Multi-Agent Deep Reinforcement Learning(MADRL),where the state space and action space are constructed to adapt the real features of UAV swarm air-to-air combat.The multi-agent particle environment is employed to generate an UAV combat scene with continuous observation space.Some recently popular MADRL methods are compared extensively in the UAV swarm noncooperative game model,the results indicate that the performance of Multi-Agent Soft Actor-Critic(MASAC)is better than that of other MADRL methods by a large margin.UAV swarm employing MASAC can learn more effective policies,and obtain much higher hit rate and win rate.Simulations under different swarm sizes and UAV physical parameters are also performed,which implies that MASAC owns a well generalization effect.Furthermore,the practicability and convergence of MASAC are addressed by investigating the loss value of Q-value networks with respect to individual UAV,the results demonstrate that MASAC is of good practicability and the Nash equilibrium of the UAV swarm non-cooperative game under incomplete information can be reached.展开更多
In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each s...In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.展开更多
Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free...Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control pro...In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control problem for the link resource management, to minimize the resource allocation cost functions, which dynamic behaviours are described by differential equations. Each link controls its transmission bandwidth based on the Nash equilibriums of the differential game. The effectiveness of the proposed model is given through numerical simulations.展开更多
In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pr...In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.展开更多
Networked noncooperative games are investigated,where each player(or agent) plays with all other players in its neighborhood. Assume the evolution is based on the fact that each player uses its neighbors current infor...Networked noncooperative games are investigated,where each player(or agent) plays with all other players in its neighborhood. Assume the evolution is based on the fact that each player uses its neighbors current information to decide its next strategy. By using sub-neighborhood, the dynamics of the evolution is obtained. Then a method for calculating Nash equilibriums from mixed strategies of multi-players is proposed.The relationship between local Nash equilibriums based on individual neighborhoods and global Nash equilibriums of overall network is revealed. Then a technique is proposed to construct Nash equilibriums of an evolutionary game from its one step static Nash equilibriums. The basic tool of this approach is the semi-tensor product of matrices, which converts strategies into logical matrices and payoffs into pseudo-Boolean functions, then networked evolutionary games become discrete time dynamic systems.展开更多
When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model an...When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model and an algorithm for scheduling of relief resources are presented. In the model, the players correspond to the multiple emergency locations, strategies correspond to all resources scheduling and the payoff of each emergency location corresponds to the reciprocal of its scheduling cost. Thus, the optimal results are determined by the Nash equilibrium point of this game. Then the iterative algorithm is introduced to seek the Nash equilibrium point. Simulation and analysis are given to demonstrate the feasibility and availability of the model.展开更多
To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (N...To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.展开更多
In order to solve the Byzantine attack problem in cooperative spectrum sensing,a non-cooperative game-theory approach is proposed to realize an effective Byzantine defense.First,under the framework of the proposed non...In order to solve the Byzantine attack problem in cooperative spectrum sensing,a non-cooperative game-theory approach is proposed to realize an effective Byzantine defense.First,under the framework of the proposed non-cooperative game theory,the pure Byzantine attack strategy and defense strategy in cooperative spectrum sensing are analyzed from the perspective of the Byzantine attacker and network administrator.The cost and benefit of the pure strategy on both sides are defined. Secondly,the mixed attack and defense strategy are also derived. The closed form Nash equilibrium is obtained by the Lemke-Howson algorithm. Furthermore,the impact of the benefit ratio and penalty rate on the dynamic process of the noncooperative game is analyzed. Numerical simulation results show that the proposed game-theory approach can effectively defend against the Byzantine attack and save the defensive cost.展开更多
This paper addresses the problem of suppression of the integrated air defense system(IADS) by multiple fighters’ cooperation. Considering the dynamic changing of the number of the nodes in the operational process, a ...This paper addresses the problem of suppression of the integrated air defense system(IADS) by multiple fighters’ cooperation. Considering the dynamic changing of the number of the nodes in the operational process, a profit model for the influence of the mission’s cost for the whole system is developed for both offense and defensive sides. The scenario analysis is given for the process of suppressing the IADS by multiple fighters. Based on this scenario analysis, the modeling method and the specific expression for the payoff function are proposed in four cases for each node. Moreover, a distributed virtual learning algorithm is designed for the n-person and n-strategy game, and the mixed strategy Nash equilibrium(MSNE) of this game can be solved from the n × m × 3-dimensional profit space. Finally, the simulation examples are provided to demonstrate the effectiveness of the proposed model and the game algorithm.展开更多
The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. ...The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. Hence, a truthful revelation by the sender of his information does not necessarily imply that the signal he sends is correct. Also, the receiver can take a correct action even if the sender transmits an incorrect signal. The payoffs of the two players depend on their combined actions. Perfect Bayesian Equilibria which can result from different degrees of noise is analysed. The Bayesian updating of probabilities is explained. The fixed point theorem which makes the connection with the idea of rational expectations in economics is calculated. Given a number of equilibria, we comment on the most credible one on the basis of the implied payoffs for both players. The equilibrium signals are an example of the formation of a language convention discussed by D. Lewis.展开更多
基金supported in part by the Project of Liaoning BaiQianWan Talents ProgramunderGrand No.2021921089the Science Research Foundation of EducationalDepartment of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant 2021200.
文摘The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.
基金This work was supported in part by the Project of Liaoning BaiQianWan Talents Program under Grand No.2021921089the Science Research Foundation of Educational Department of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001+2 种基金the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017the special project of SUT on serving local economic and social development decision-making under Grant FWDFGD2021019the“Double First-Class”Construction Project in Liaoning Province under Grant ZDZRGD2020037.
文摘A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.
基金supported by the China Postdoctoral Science Foundation(No.2015M570936)National Science Foundation Project of P.R.China(No.61501026,61272506)Fundamental Research Funds for the Central Universities(No.FRF-TP-15032A1)
文摘In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
基金This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no.701697Major Program of the National Social Science Fund of China(Grant No.17ZDA092)+2 种基金Basic Research Programs(Natural Science Foundation)of Jiangsu Province(BK20180794)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)the PAPD fund.
文摘Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.
基金Supported by the National Natural Science Foundation of China(No.61272120)the Science and Technology Project of Xi'an(No.CXY1117(5))
文摘The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.
文摘Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the National Natural Science Foundation of China(No.62173237)+4 种基金the Academic Research Projects of Beijing Union University,China(Nos.SK160202103,ZK50201911,ZK30202107,ZK30202108)the Song Shan Laboratory Foundation,China(No.YYJC062022017)the Applied Basic Research Programs of Liaoning Province,China(Nos.2022020502-JH2/1013,2022JH2/101300150)the Special Funds program of Civil Aircraft,China(No.01020220627066)the Special Funds program of Shenyang Science and Technology,China(No.22-322-3-34).
文摘Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV swarm non-cooperative game model based on Multi-Agent Deep Reinforcement Learning(MADRL),where the state space and action space are constructed to adapt the real features of UAV swarm air-to-air combat.The multi-agent particle environment is employed to generate an UAV combat scene with continuous observation space.Some recently popular MADRL methods are compared extensively in the UAV swarm noncooperative game model,the results indicate that the performance of Multi-Agent Soft Actor-Critic(MASAC)is better than that of other MADRL methods by a large margin.UAV swarm employing MASAC can learn more effective policies,and obtain much higher hit rate and win rate.Simulations under different swarm sizes and UAV physical parameters are also performed,which implies that MASAC owns a well generalization effect.Furthermore,the practicability and convergence of MASAC are addressed by investigating the loss value of Q-value networks with respect to individual UAV,the results demonstrate that MASAC is of good practicability and the Nash equilibrium of the UAV swarm non-cooperative game under incomplete information can be reached.
基金supported by the National Natural Science Foundation of China(51877174)the Natural Science Basic Research Key Project of Shaanxi(2024JC-ZDXM-31)the Technology Innovation Leading Program of Shaanxi(2024-QCY-KXJ-032).
文摘In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.
基金supported by the National Defense Science and Technology Innovation (18-163-15-Lz-001-004-13)。
文摘Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
基金supported by National Science Foundation Project of P. R. China (No.61501026,U1603116)the Fundamental Research Funds for the Central Universities (No.FRF-TP-15-032A1)
文摘In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control problem for the link resource management, to minimize the resource allocation cost functions, which dynamic behaviours are described by differential equations. Each link controls its transmission bandwidth based on the Nash equilibriums of the differential game. The effectiveness of the proposed model is given through numerical simulations.
基金Project(61201143)supported by the National Natural Science Foundation of China
文摘In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.
文摘Networked noncooperative games are investigated,where each player(or agent) plays with all other players in its neighborhood. Assume the evolution is based on the fact that each player uses its neighbors current information to decide its next strategy. By using sub-neighborhood, the dynamics of the evolution is obtained. Then a method for calculating Nash equilibriums from mixed strategies of multi-players is proposed.The relationship between local Nash equilibriums based on individual neighborhoods and global Nash equilibriums of overall network is revealed. Then a technique is proposed to construct Nash equilibriums of an evolutionary game from its one step static Nash equilibriums. The basic tool of this approach is the semi-tensor product of matrices, which converts strategies into logical matrices and payoffs into pseudo-Boolean functions, then networked evolutionary games become discrete time dynamic systems.
文摘When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model and an algorithm for scheduling of relief resources are presented. In the model, the players correspond to the multiple emergency locations, strategies correspond to all resources scheduling and the payoff of each emergency location corresponds to the reciprocal of its scheduling cost. Thus, the optimal results are determined by the Nash equilibrium point of this game. Then the iterative algorithm is introduced to seek the Nash equilibrium point. Simulation and analysis are given to demonstrate the feasibility and availability of the model.
基金National Natural Science Foundation of China (No.60772062)the Key Projects for Science and Technology of MOE (No.206055)the Key Basic Re-search Projects for the Natural Science of Jiangsu Colleges (No.06KJA51001).
文摘To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.
基金The National Natural Science Foundation of China(No.61771126)
文摘In order to solve the Byzantine attack problem in cooperative spectrum sensing,a non-cooperative game-theory approach is proposed to realize an effective Byzantine defense.First,under the framework of the proposed non-cooperative game theory,the pure Byzantine attack strategy and defense strategy in cooperative spectrum sensing are analyzed from the perspective of the Byzantine attacker and network administrator.The cost and benefit of the pure strategy on both sides are defined. Secondly,the mixed attack and defense strategy are also derived. The closed form Nash equilibrium is obtained by the Lemke-Howson algorithm. Furthermore,the impact of the benefit ratio and penalty rate on the dynamic process of the noncooperative game is analyzed. Numerical simulation results show that the proposed game-theory approach can effectively defend against the Byzantine attack and save the defensive cost.
基金supported by the National Natural Science Foundation of China(61603411)
文摘This paper addresses the problem of suppression of the integrated air defense system(IADS) by multiple fighters’ cooperation. Considering the dynamic changing of the number of the nodes in the operational process, a profit model for the influence of the mission’s cost for the whole system is developed for both offense and defensive sides. The scenario analysis is given for the process of suppressing the IADS by multiple fighters. Based on this scenario analysis, the modeling method and the specific expression for the payoff function are proposed in four cases for each node. Moreover, a distributed virtual learning algorithm is designed for the n-person and n-strategy game, and the mixed strategy Nash equilibrium(MSNE) of this game can be solved from the n × m × 3-dimensional profit space. Finally, the simulation examples are provided to demonstrate the effectiveness of the proposed model and the game algorithm.
文摘The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. Hence, a truthful revelation by the sender of his information does not necessarily imply that the signal he sends is correct. Also, the receiver can take a correct action even if the sender transmits an incorrect signal. The payoffs of the two players depend on their combined actions. Perfect Bayesian Equilibria which can result from different degrees of noise is analysed. The Bayesian updating of probabilities is explained. The fixed point theorem which makes the connection with the idea of rational expectations in economics is calculated. Given a number of equilibria, we comment on the most credible one on the basis of the implied payoffs for both players. The equilibrium signals are an example of the formation of a language convention discussed by D. Lewis.