The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable su...This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element proce...This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.展开更多
Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed accordin...Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed according to the moment equilibriums of the segments. Linearization iteration scheme is employed to obtain the numerical solution for the governing equations. For the cable being laid, the payout rate is calculated from the velocities of all segments. The numerical results are shown of the dynamic motion and tension of marine cables being laid during velocity change of the mother vessels.展开更多
In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidifica...In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidification continu- ous casting (DSCC) process. theresults show that the fibrillar strengthening phase, β-Cr, orderlyarranges among the copper matrix phase along the wire direction; andmicrostructure of in-situ composite forms, which retains the basicproperty of good conductivity of the copper matrix and meanwhileobtains the strengthening effect ofβ-Cr phase.展开更多
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The n...The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.展开更多
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse ...The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.展开更多
The construction of the cables is a key step for erecting suspen-dome structures. In practical engineering, it is difficult to ensure that the designed pre-stresses of cables have been exactly introduced into the stru...The construction of the cables is a key step for erecting suspen-dome structures. In practical engineering, it is difficult to ensure that the designed pre-stresses of cables have been exactly introduced into the structures in the site; so it is necessary to evaluate the influence of the variation of the pre-stresses on the structural behavior. In the present work, an orthogonal design method was employed to investigate the pre-stressed cables' sensitivity to the suspen-dome system. The investigation was concentrated on a Kiewitt suspen-dome. Parametric studies were carried out to study the sensitivity of the structure's static behavior, dynamic behavior, and buckling loads when the pre-stresses in the cables varied. The investigation indicated that suspen-dome structures are sensitive to the pre-stresses in all cables; and that the sensitivity depended on the location of the cables and the kind of structural behavior. Useful suggestions are given at the end of the paper.展开更多
Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial val...Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.展开更多
The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfe...The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfer matrix method was inadequate for this task, and hence the larger exterior matrices were used to determine the eigenfrequency equation. Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.展开更多
This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use...This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.展开更多
In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS d...In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented. The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect. From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions.展开更多
Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understa...Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understanding pressure signals.We used the van der Waals air gun model to simulate the wavelets of a sleeve gun of various offsets and arrival angles.Several factors were taken into account,such as heat transfer,the thermodynamically open quasi-static system,the vertical rise of the bubble,and air gun post throttling.Marine vertical cables are located on the seafloor,but hydrophones are located in seawater and are far away from the air gun array vertically.This situation conforms to the acquisition conditions of the air gun far-field wavelet and thus avoids the problems of ship noise,ocean surges,and coupling.High-quality 3D wavelet data of air gun arrays were collected during a vertical cable test in the South China Sea in 2017.We proposed an evaluation method of multidimensional facial features,including zeropeak amplitude,peak-peak amplitude,bubble period,primary-to-bubble ratio,frequency spectrum,instantaneous amplitude,instantaneous phase,and instantaneous frequency,to characterize the 3D air gun wave field.The match between the facial features in the field and simulated data provides confidence for the use of the van der Waals air gun model to predict air gun wavelet and facial features to evaluate air gun array.展开更多
<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics o...<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div>展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12102380)the Natural Science Foundation of Jiangsu Province of China(No.BK20180894)。
文摘This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
文摘This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51009092 and 51279107)Doctoral Foundation of Education Ministry of China(Grant No.20090073120013)Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed according to the moment equilibriums of the segments. Linearization iteration scheme is employed to obtain the numerical solution for the governing equations. For the cable being laid, the payout rate is calculated from the velocities of all segments. The numerical results are shown of the dynamic motion and tension of marine cables being laid during velocity change of the mother vessels.
文摘In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidification continu- ous casting (DSCC) process. theresults show that the fibrillar strengthening phase, β-Cr, orderlyarranges among the copper matrix phase along the wire direction; andmicrostructure of in-situ composite forms, which retains the basicproperty of good conductivity of the copper matrix and meanwhileobtains the strengthening effect ofβ-Cr phase.
基金Supported by National Natural Science Foundation of China(Grant No.51275500)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV201502)+1 种基金USTC-COOGOO Robotics Research Center(Grant No.2015)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2012321)
文摘The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
基金Funded by the Science and Technolog Program of Ministry of Transport of P.R.China(No.2012318352100)
文摘The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.
基金Project (No. 50278086) supported by the National Natural Science Foundation of China
文摘The construction of the cables is a key step for erecting suspen-dome structures. In practical engineering, it is difficult to ensure that the designed pre-stresses of cables have been exactly introduced into the structures in the site; so it is necessary to evaluate the influence of the variation of the pre-stresses on the structural behavior. In the present work, an orthogonal design method was employed to investigate the pre-stressed cables' sensitivity to the suspen-dome system. The investigation was concentrated on a Kiewitt suspen-dome. Parametric studies were carried out to study the sensitivity of the structure's static behavior, dynamic behavior, and buckling loads when the pre-stresses in the cables varied. The investigation indicated that suspen-dome structures are sensitive to the pre-stresses in all cables; and that the sensitivity depended on the location of the cables and the kind of structural behavior. Useful suggestions are given at the end of the paper.
文摘Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.
文摘The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfer matrix method was inadequate for this task, and hence the larger exterior matrices were used to determine the eigenfrequency equation. Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.
文摘This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.
基金National Natural Science Foundation of China Under Grant No. 50178025
文摘In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented. The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect. From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions.
基金the National Natural Science Foundation of China(Nos.91958206,91858215)the National Key Research and Development Program Pilot Project(Nos.2018YFC1405901,2017YFC0307401)+1 种基金the Fundamental Research Funds for the Central Univer-sities(No.201964016)the Marine Geological Survey Program of China Geological Survey(No.DD20190819)。
文摘Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understanding pressure signals.We used the van der Waals air gun model to simulate the wavelets of a sleeve gun of various offsets and arrival angles.Several factors were taken into account,such as heat transfer,the thermodynamically open quasi-static system,the vertical rise of the bubble,and air gun post throttling.Marine vertical cables are located on the seafloor,but hydrophones are located in seawater and are far away from the air gun array vertically.This situation conforms to the acquisition conditions of the air gun far-field wavelet and thus avoids the problems of ship noise,ocean surges,and coupling.High-quality 3D wavelet data of air gun arrays were collected during a vertical cable test in the South China Sea in 2017.We proposed an evaluation method of multidimensional facial features,including zeropeak amplitude,peak-peak amplitude,bubble period,primary-to-bubble ratio,frequency spectrum,instantaneous amplitude,instantaneous phase,and instantaneous frequency,to characterize the 3D air gun wave field.The match between the facial features in the field and simulated data provides confidence for the use of the van der Waals air gun model to predict air gun wavelet and facial features to evaluate air gun array.
文摘<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div>