Fluctuated loadings from currents,waves and sea ground motions are observed on offshore steel pipelines,and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnic...Fluctuated loadings from currents,waves and sea ground motions are observed on offshore steel pipelines,and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnical infrastructures.In spite of the availability of efficient techniques and high-power computers for solving crack problems,investigations on the fatigue life of offshore pipelines with 3D interacting cracks are still rarely found in open literature.In the current study,systematic numerical investigations are performed on fatigue crack growth behaviours of offshore pipelines containing coplanar and non-coplanar cracks.Extended finite element method(XFEM)is adopted to simulate the fatigue crack growth.The qualitative validations of numerical results are made for certain cases with available experimental results.Parametric studies are conducted to investigate the influences of various important parameters on fatigue crack growth.The results will be helpful to assess the fatigue behaviours of steel pipeline with 3D interacting cracks.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c...Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.展开更多
The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T ...The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15.展开更多
Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t...Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.展开更多
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ...Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.展开更多
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th...Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.展开更多
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su...The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels.展开更多
In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed...In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed in certain special glasses[1].This study utilized SSNMR to analyze the atomic-scale internal structure of glass,enabling the quantification of the fraction of three-coordinated oxygen([^((3))O]).The research findings demonstrate a quantitative relationship between[^((3))O]and the resistance of glass to crack initiation.展开更多
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t...A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.展开更多
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s...Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.展开更多
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli...Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.展开更多
The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods ...The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.展开更多
Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection ac...Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro...Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.展开更多
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun...Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.展开更多
基金The authors would like to acknowledge the financial support for this project under Nanyang Technological University,Singapore’s Academic Research Fund(AcRF)Tier 1 Grant No.RG 168/16.
文摘Fluctuated loadings from currents,waves and sea ground motions are observed on offshore steel pipelines,and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnical infrastructures.In spite of the availability of efficient techniques and high-power computers for solving crack problems,investigations on the fatigue life of offshore pipelines with 3D interacting cracks are still rarely found in open literature.In the current study,systematic numerical investigations are performed on fatigue crack growth behaviours of offshore pipelines containing coplanar and non-coplanar cracks.Extended finite element method(XFEM)is adopted to simulate the fatigue crack growth.The qualitative validations of numerical results are made for certain cases with available experimental results.Parametric studies are conducted to investigate the influences of various important parameters on fatigue crack growth.The results will be helpful to assess the fatigue behaviours of steel pipeline with 3D interacting cracks.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金This study was funded by the National Natural Science Foundation of China(42062019,42002283)the Project of Qinghai Science&Technology Department(2021-ZJ-927).
文摘Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.
基金Supported by National Natural Science Foundation of China (Grant No.52375159)National Railway Administration of China (Grant No.KF2023-025)the Independent Research Project of the State Key Laboratory of Traction Power (Grant No.2022TPL_T03)。
文摘The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15.
基金supported by China National Postdoctoral Program for Innovative Talents (BX20230121)China Postdoctoral Science Foundation (2023M741163)Shanghai Super Postdoctoral Incentive Program (2023741)。
文摘Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.
基金supported by the National Natural Science Foundation of China(Grant No.42372310).
文摘Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.
基金We would like to acknowledge all the reviewers and editors and the sponsorship of National Natural Science Foundation of China(42030103)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM020001-6)the Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400).
文摘Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.
基金the Changsha Science and Technology Plan 2004081in part by the Science and Technology Program of Hunan Provincial Department of Transportation 202117in part by the Science and Technology Research and Development Program Project of the China Railway Group Limited 2021-Special-08.
文摘The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels.
基金supported by the National Natural Science Foundation of China(42177444 and U1932218).
文摘In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed in certain special glasses[1].This study utilized SSNMR to analyze the atomic-scale internal structure of glass,enabling the quantification of the fraction of three-coordinated oxygen([^((3))O]).The research findings demonstrate a quantitative relationship between[^((3))O]and the resistance of glass to crack initiation.
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
基金the National Key R&D Program of China(2022YFA1504404)the SINOPEC Research Program(121036-5).
文摘A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.
基金the financial support by the Defense Industrial Technology Development Program(No.JCKY2020130C024)the National Science and Technology Major Project,China(No.Y2019-Ⅶ-0011-0151)the Science Center for Gas Turbine Project(No.P2022-C-Ⅳ-002-001)。
文摘Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.
基金funded by the National Natural Science Foundation of China (No. 42172308, No.51779018)the Youth Innovation Promotion Association CAS (No. 2022331)the Science and Technology Research and Development Program of China State Railway Group Co., Ltd. (No. J2022G002)。
文摘Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.
基金support from the Australian Research Council(ARC)through Discovery Project DP210102224.
文摘The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.
基金supported by the National Key Research and Development Program of China(Grant Nos.2019YFB1600700 and 2019YFB1600701)the Wuhan Maritime Communication Research Institute(Grant No.2020MG001/050-22-CF).
文摘Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金supported by the National Natural Science Foundation of China(Project No.41920104007 and 41772334).
文摘Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.
基金the following funding agencies for supporting this work: the National Natural Science Foundation of China (22025502, U23A20552, 22379026, 22222901, 22175022)the Natural Science Foundation of Shanghai (23ZR1407000)the Science and Technology Commission of Shanghai Municipality (21DZ1206800)
文摘Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.