The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, y...Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.展开更多
随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向...随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.展开更多
The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on t...The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.展开更多
With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we...With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.展开更多
A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive ove...A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive over-arching concepts that cannot be seen by the individual studies alone. Equations of best fits suggest non-linear changes for fabric thickness, thermal and water-vapor resistance with changes in material blend ratio. Air permeability decreases with increasing fabric density and fabric weight wherein the degree of decrease differs among fabric materials, blend ratio, and fabric structure. Water-vapor transmission rates strongly depend on fabric thickness, material, and blend, but marginally depend on fabric structure as long as the fabric and material thickness remain the same.展开更多
Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester...Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester fiber blend ratio as well as the different pilling cycles on blended fabrics. The cotton, polyester, and elastane prepared the study fabrics. These fabrics are (90% Cotton/5% Polyester/5% Elastane, 90% Cotton/6% Polyester/4% Elastane, 90% Cotton/7% Polyester/3% Elastane, 90% Cotton/8% Polyester/2% Elastane, and 90% Cotton/9% Polyester/1% Elastane, 85% Cotton/10% Polyester/5% Elastane, 85% Cotton/11% Polyester/4% Elastane, 85% Cotton/12% Polyester/3% Elastane, 85% Cotton/13% Polyester/2% Elastane, and 85% Cotton/ 14% Polyester/1% Elastane, 80% Cotton/15% Polyester/5% Elastane, 80% Cotton/16% Polyester/4% Elastane, 80% Cotton/17% Polyester/3% Elastane, 80% Cotton/18% Polyester/2% Elastane, and 80% Cotton/19% Polyester/1% Elastane). The selected polyester blend ratios were 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% respectively. The study used the Martindale pilling tester with 2000, 5000, and 7000 cycles, respectively. The evaluation followed the ISO 12945-2:2000. The study findings are that the polyester fiber blend ratio did not influence the pilling grade on blended fabrics for pilling cycles 2000, and the pilling grade remained constant at 4 - 5. The pilling grade started to deteriorate in pilling cycle 5000 for the fabrics 85%C/10%P/5%E, 85%C/11%P/4%E, 85%C/12%P/3%E, 85%C/ 13%P/2%E, 85%C/14%P/1%E showed the pilling grade 4, and the fabrics made from 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 4, 3, 3, 3, and 3 respectively. For the pilling cycles 7000, the pilling grade further deteriorated for the fabrics 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 3, 3, 2, 2, and 2 respectively. The study finds the dominance of polyester fiber throughout the experiment. The author hopes this study’s outcome will help new researchers, advanced researchers, and the textile industry’s sustainable development research and development team.展开更多
Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, t...Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.展开更多
The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fi...The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.展开更多
Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,...Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,and simplicity of automated control implementation.Herein,electrocoagulation is offered as a method for treating wastewater containing azo dyes using a revolutionary flexible electronic fabric that can be mass-producible at a reasonable price.A computer-controlled machine embroiders 316L stainless steel fiber(316L SSF)onto an insulating fabric to manufacture a flexible electronic device of cathode and anode with a monopolar arrangement on the fabric surface.Using methyl orange(MO)solution to simulate azo dye wastewater,the decolorization rate of 500 ml MO reached 99.25% under the conditions of 50 mg·L^(-1)initial mass concentration,120 min electrolysis time,15 mA·g^(-1)current density,1 cm electrode spacing,0.1 mol·L^(-1)NaCl,pH 7.6,200 r·min^(-1)rotational speed of the stirrer,and 22-25℃ room temperature.In addition,it is feasible to embroider flexible electronic fabrics with varied sizes and numbers of electrodes based on the amount of treated sewage to increase the degradation rate,which has significant practical application value.展开更多
Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PT...Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).展开更多
This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for sh...This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.展开更多
In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The ...In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.展开更多
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d...Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.展开更多
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this secto...With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications.展开更多
Poisson’s ratio changes during the tensile stress of technical fabric samples due to the anisotropy of technical fabrics.This paper examines the effects of the type of weave and the anisotropic characteristics of the...Poisson’s ratio changes during the tensile stress of technical fabric samples due to the anisotropy of technical fabrics.This paper examines the effects of the type of weave and the anisotropic characteristics of the technical fabric on maximum tensile force,corresponding elongation,work-to-maximum force,elasticity modulus,and Poisson’s ratio when axial tensile forces are applied to samples cut at various angles in the direction of the weft yarns of the technical fabric.In the lab,3 cotton fabric samples of constant warp and weft density with different structural weave types(plain weave,twill weave,atlas weave)were subjected to the tensile force until they broke at the following angles:0°,15°,30°,45°,60°,75°,90°.Based on the different measured values of technical fabric stretching in the longitudinal direction and lateral narrowing,Poisson’s ratio is calculated.The Poisson’s ratio was calculated up to a relative elongation of the fabric of 8%,as the buckling of the fabric occurs according to this elongation value.According to the results presented in this paper,the type of weave of the fabric,the direction of tensile force,and the relative narrowing of the technical fabrics all play important roles in the Poisson’s ratio value.The Poisson’s ratio curve of a technical fabric under tensile stress(i.e.elongation)is primarily determined by its behaviour in the opposite direction of the elongation.The change in the value of the Poisson’s ratio is represented by a graph that first increases nonlinearly and then decreases after reaching its maximum value.展开更多
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
文摘Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.
文摘随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.
基金supported by the National Natural Science Foundation of China(11902008)Hubei Province Science and Technology Project(2021BAA069)。
文摘The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.
基金Fundamental Research Funds for the Central Universities,China(Nos.2232022D-11 and 22D128102/007)Jiangsu Transformation and Upgrading Funding Program for Industrial and Information Industry,ChinaShanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission,China(No.20ZR1401600)。
文摘With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.
文摘A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive over-arching concepts that cannot be seen by the individual studies alone. Equations of best fits suggest non-linear changes for fabric thickness, thermal and water-vapor resistance with changes in material blend ratio. Air permeability decreases with increasing fabric density and fabric weight wherein the degree of decrease differs among fabric materials, blend ratio, and fabric structure. Water-vapor transmission rates strongly depend on fabric thickness, material, and blend, but marginally depend on fabric structure as long as the fabric and material thickness remain the same.
文摘Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester fiber blend ratio as well as the different pilling cycles on blended fabrics. The cotton, polyester, and elastane prepared the study fabrics. These fabrics are (90% Cotton/5% Polyester/5% Elastane, 90% Cotton/6% Polyester/4% Elastane, 90% Cotton/7% Polyester/3% Elastane, 90% Cotton/8% Polyester/2% Elastane, and 90% Cotton/9% Polyester/1% Elastane, 85% Cotton/10% Polyester/5% Elastane, 85% Cotton/11% Polyester/4% Elastane, 85% Cotton/12% Polyester/3% Elastane, 85% Cotton/13% Polyester/2% Elastane, and 85% Cotton/ 14% Polyester/1% Elastane, 80% Cotton/15% Polyester/5% Elastane, 80% Cotton/16% Polyester/4% Elastane, 80% Cotton/17% Polyester/3% Elastane, 80% Cotton/18% Polyester/2% Elastane, and 80% Cotton/19% Polyester/1% Elastane). The selected polyester blend ratios were 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% respectively. The study used the Martindale pilling tester with 2000, 5000, and 7000 cycles, respectively. The evaluation followed the ISO 12945-2:2000. The study findings are that the polyester fiber blend ratio did not influence the pilling grade on blended fabrics for pilling cycles 2000, and the pilling grade remained constant at 4 - 5. The pilling grade started to deteriorate in pilling cycle 5000 for the fabrics 85%C/10%P/5%E, 85%C/11%P/4%E, 85%C/12%P/3%E, 85%C/ 13%P/2%E, 85%C/14%P/1%E showed the pilling grade 4, and the fabrics made from 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 4, 3, 3, 3, and 3 respectively. For the pilling cycles 7000, the pilling grade further deteriorated for the fabrics 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 3, 3, 2, 2, and 2 respectively. The study finds the dominance of polyester fiber throughout the experiment. The author hopes this study’s outcome will help new researchers, advanced researchers, and the textile industry’s sustainable development research and development team.
基金the financial support provided by the National Natural Science Foundation of China (21808044)。
文摘Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.
文摘The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.
基金financial support from the National Natural Science Foundation of China(31872901)Major State Basic Research Development Program of China(2016YFA0501602)。
文摘Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,and simplicity of automated control implementation.Herein,electrocoagulation is offered as a method for treating wastewater containing azo dyes using a revolutionary flexible electronic fabric that can be mass-producible at a reasonable price.A computer-controlled machine embroiders 316L stainless steel fiber(316L SSF)onto an insulating fabric to manufacture a flexible electronic device of cathode and anode with a monopolar arrangement on the fabric surface.Using methyl orange(MO)solution to simulate azo dye wastewater,the decolorization rate of 500 ml MO reached 99.25% under the conditions of 50 mg·L^(-1)initial mass concentration,120 min electrolysis time,15 mA·g^(-1)current density,1 cm electrode spacing,0.1 mol·L^(-1)NaCl,pH 7.6,200 r·min^(-1)rotational speed of the stirrer,and 22-25℃ room temperature.In addition,it is feasible to embroider flexible electronic fabrics with varied sizes and numbers of electrodes based on the amount of treated sewage to increase the degradation rate,which has significant practical application value.
文摘Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).
文摘This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.
基金Funded by the National Natural Science Foundation of China(No.51203144)
文摘In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.
基金supported by the Hunan Science Fund for Distinguished Young Scholars (2023JJ10069)the National Natural Science Foundation of China (52172169)。
文摘Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
基金This work is supported by the International Publication Research Grant No.RDU223301 and Postgraduate Research Grant Scheme,UMP,Malaysia(PGRS210370).
文摘With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications.
文摘Poisson’s ratio changes during the tensile stress of technical fabric samples due to the anisotropy of technical fabrics.This paper examines the effects of the type of weave and the anisotropic characteristics of the technical fabric on maximum tensile force,corresponding elongation,work-to-maximum force,elasticity modulus,and Poisson’s ratio when axial tensile forces are applied to samples cut at various angles in the direction of the weft yarns of the technical fabric.In the lab,3 cotton fabric samples of constant warp and weft density with different structural weave types(plain weave,twill weave,atlas weave)were subjected to the tensile force until they broke at the following angles:0°,15°,30°,45°,60°,75°,90°.Based on the different measured values of technical fabric stretching in the longitudinal direction and lateral narrowing,Poisson’s ratio is calculated.The Poisson’s ratio was calculated up to a relative elongation of the fabric of 8%,as the buckling of the fabric occurs according to this elongation value.According to the results presented in this paper,the type of weave of the fabric,the direction of tensile force,and the relative narrowing of the technical fabrics all play important roles in the Poisson’s ratio value.The Poisson’s ratio curve of a technical fabric under tensile stress(i.e.elongation)is primarily determined by its behaviour in the opposite direction of the elongation.The change in the value of the Poisson’s ratio is represented by a graph that first increases nonlinearly and then decreases after reaching its maximum value.