In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
In this article, we study the Cauchy problem for the linearized spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. By using the spectral decomposition, we solve the Cauchy problem with init...In this article, we study the Cauchy problem for the linearized spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. By using the spectral decomposition, we solve the Cauchy problem with initial datum in the sense of distribution, which contains the dual space of a Gelfand-Shilov class. We also prove that this solution belongs to the Gelfand-Shilov space for any positive time.展开更多
This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical...This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].展开更多
We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wav...We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wavenumber and is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications.展开更多
In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is s...In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.展开更多
The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invarianc...The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.展开更多
A lattice Boltzmann(LB) theory, the analytical characteristic integral(ACI) LB theory, is proposed in this paper.ACI LB theory takes the Bhatnagar–Gross–Krook(BGK)-Boltzmann equation as the exact kinetic equation be...A lattice Boltzmann(LB) theory, the analytical characteristic integral(ACI) LB theory, is proposed in this paper.ACI LB theory takes the Bhatnagar–Gross–Krook(BGK)-Boltzmann equation as the exact kinetic equation behind Navier–Stokes continuum and momentum equations and constructs an LB equation by rigorously integrating the BGK-Boltzmann equation along characteristics. It is a general theory, supporting most existing LB equations including the standard lattice BGK(LBGK) equation inherited from lattice-gas automata, whose theoretical foundation had been questioned. ACI LB theory also indicates that the characteristic parameter of an LB equation is collision number, depicting the particle-interaction intensity in the time span of the LB equation, instead of the traditionally assumed relaxation time, and the over-relaxation time problem is merely a manifestation of the temporal evolution of equilibrium distribution along characteristics under high collision number, irrelevant to particle kinetics. In ACI LB theory, the temporal evolution of equilibrium distribution along characteristics is the determinant of LB method accuracy and we numerically prove this.展开更多
In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical ...In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.展开更多
The regularity of solutions to the Boltzmann equation is a fundamental problem in the kinetic theory. In this paper, the case with angular cut-off is investigated. It is shown that the macroscopic parts of solutions t...The regularity of solutions to the Boltzmann equation is a fundamental problem in the kinetic theory. In this paper, the case with angular cut-off is investigated. It is shown that the macroscopic parts of solutions to the Boltzmann equation, i.e., the density, momentum and total energy are continuous functions of (x, t) in the region R3 × (0, +∞). More precisely, these macroscopic quantities immediately become continuous in any positive time even though they are initially discontinuous and the discontinuities of solutions propagate only in the microscopic level. It should be noted that such kind of phenomenon can not hap- pen for the compressible Navier-Stokes equations in which the initial discontinuities of the density never vanish in any finite time, see [22]. This hints that the Boltzmann equation has better regularity effect in the macroscopic level than compressible Navier-Stokes equations.展开更多
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model...This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.展开更多
In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation i...In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally.展开更多
We study the initial-boundary value problem for the one dimensional Euler-Boltzmann equation with reflection boundary condition. For initial data with small total variation, we use a modified Glimm scheme to construct...We study the initial-boundary value problem for the one dimensional Euler-Boltzmann equation with reflection boundary condition. For initial data with small total variation, we use a modified Glimm scheme to construct the global approximate solutions (U△t,d, I△t,d) and prove that there is a subsequence of the approximate solutions which is convergent to the global solution.展开更多
In the presence of external forces depending only on the time and space variables, the Boltzmann-Enskog equation formally conserves only the mass of the . system, and its entropy functional is also nonincreasing. Cor...In the presence of external forces depending only on the time and space variables, the Boltzmann-Enskog equation formally conserves only the mass of the . system, and its entropy functional is also nonincreasing. Corresponding to this type of equation, we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals: one is to describe interactions between particles with different velocities and the other is to measure the L1 distance between two mild solutions. The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the veri-fication of the L1 stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the influence of external forces.展开更多
The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical...The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave;calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.展开更多
In this work, we study the Cauchy problem for the radially symmetric spatially homogeneous Boltzmann equation with Debye-Yukawa potential. We prove that this Cauchy problem enjoys the same smoothing effect as the Cauc...In this work, we study the Cauchy problem for the radially symmetric spatially homogeneous Boltzmann equation with Debye-Yukawa potential. We prove that this Cauchy problem enjoys the same smoothing effect as the Cauchy problem defined by the evolution equation associated to a fractional logarithmic harmonic oscillator. To be specific, we can prove the solution of the Cauchy problem belongs to Shubin spaces.展开更多
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.
基金supported by the Fundamental Research Funds for the Central Unversities and National Science Foundation of China(11171261and 11422106)
文摘In this article, we study the Cauchy problem for the linearized spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. By using the spectral decomposition, we solve the Cauchy problem with initial datum in the sense of distribution, which contains the dual space of a Gelfand-Shilov class. We also prove that this solution belongs to the Gelfand-Shilov space for any positive time.
基金supported by the Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].
文摘We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wavenumber and is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications.
基金The project supported by the National Natural Science Foundation of China(60073044)the State Key Development Programme for Basic Research of China(G1990022207).
文摘In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90816013 and 10572083)Shanghai Leading Academic Discipline Project,China (Grant No Y0103)
文摘The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.
基金Project supported by the National Science and Technology Major Project,China(Grant No.2017ZX06002002)
文摘A lattice Boltzmann(LB) theory, the analytical characteristic integral(ACI) LB theory, is proposed in this paper.ACI LB theory takes the Bhatnagar–Gross–Krook(BGK)-Boltzmann equation as the exact kinetic equation behind Navier–Stokes continuum and momentum equations and constructs an LB equation by rigorously integrating the BGK-Boltzmann equation along characteristics. It is a general theory, supporting most existing LB equations including the standard lattice BGK(LBGK) equation inherited from lattice-gas automata, whose theoretical foundation had been questioned. ACI LB theory also indicates that the characteristic parameter of an LB equation is collision number, depicting the particle-interaction intensity in the time span of the LB equation, instead of the traditionally assumed relaxation time, and the over-relaxation time problem is merely a manifestation of the temporal evolution of equilibrium distribution along characteristics under high collision number, irrelevant to particle kinetics. In ACI LB theory, the temporal evolution of equilibrium distribution along characteristics is the determinant of LB method accuracy and we numerically prove this.
基金supported in part by the National Key Basic Research Program of China(973 Program)(No.2015CB251002)the Science and Technology Project Funds of the Grid State Corporation of China(No.SGSNK00KJJS1501564)+2 种基金National Natural Science Foundation of China(Nos.51221005,51577145)the Fundamental Research Funds for the Central Universities of Chinathe Program for New Century Excellent Talents in University,China
文摘In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.
基金partially supported by by National Center for Mathematics and Interdisciplinary Sciences,AMSS,CAS and NSFC(11371349 and 11688101)partially supported by NSFC(11688101,11771429)
文摘The regularity of solutions to the Boltzmann equation is a fundamental problem in the kinetic theory. In this paper, the case with angular cut-off is investigated. It is shown that the macroscopic parts of solutions to the Boltzmann equation, i.e., the density, momentum and total energy are continuous functions of (x, t) in the region R3 × (0, +∞). More precisely, these macroscopic quantities immediately become continuous in any positive time even though they are initially discontinuous and the discontinuities of solutions propagate only in the microscopic level. It should be noted that such kind of phenomenon can not hap- pen for the compressible Navier-Stokes equations in which the initial discontinuities of the density never vanish in any finite time, see [22]. This hints that the Boltzmann equation has better regularity effect in the macroscopic level than compressible Navier-Stokes equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10661005)Fujian Province Science and Technology Plan Item (Grant No. 2008F5019)
文摘This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
文摘In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally.
基金supported in part by NSFC Project(11421061)the 111 Project(B08018)Shanghai Natural Science Foundation(15ZR1403900)
文摘We study the initial-boundary value problem for the one dimensional Euler-Boltzmann equation with reflection boundary condition. For initial data with small total variation, we use a modified Glimm scheme to construct the global approximate solutions (U△t,d, I△t,d) and prove that there is a subsequence of the approximate solutions which is convergent to the global solution.
基金The NSF (11171356) of Chinathe Grant (09LGTY45) of Sun Yat-Sen University
文摘In the presence of external forces depending only on the time and space variables, the Boltzmann-Enskog equation formally conserves only the mass of the . system, and its entropy functional is also nonincreasing. Corresponding to this type of equation, we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals: one is to describe interactions between particles with different velocities and the other is to measure the L1 distance between two mild solutions. The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the veri-fication of the L1 stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the influence of external forces.
文摘The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave;calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.
基金supported by the Natural Science Foundation of China(11701578)
文摘In this work, we study the Cauchy problem for the radially symmetric spatially homogeneous Boltzmann equation with Debye-Yukawa potential. We prove that this Cauchy problem enjoys the same smoothing effect as the Cauchy problem defined by the evolution equation associated to a fractional logarithmic harmonic oscillator. To be specific, we can prove the solution of the Cauchy problem belongs to Shubin spaces.