This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,whi...Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.展开更多
As a current popular method,intelligent detection of cracks is of great significance to road safety,so deep learning has gradually attracted attention in the field of crack image detection.The nonlinear structure,low ...As a current popular method,intelligent detection of cracks is of great significance to road safety,so deep learning has gradually attracted attention in the field of crack image detection.The nonlinear structure,low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning.Therefore,an end-to-end deep convolutional neural network(AttentionCrack)is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels.The AttentionCrack network is built on U-Net based encoder-decoder architecture,and an attention mechanism is incorporated into the multi-scale convolutional feature to enhance the recognition of crack region.Additionally,a dilated convolution module is introduced in the encoder-decoder architecture to reduce the loss of crack detail due to the pooling operation in the encoder network.Furthermore,since up-sampling will lead to the loss of crack boundary information in the decoder network,a depthwise separable residual module is proposed to capture the boundary information of pavement crack.The AttentionCrack net on public pavement crack image datasets named CrackSegNet and Crack500 is trained and tested,the results demonstrate that the AttentionCrack achieves F1 score over 0.70 on the CrackSegNet and 0.71 on the Crack500 in average and outperforms the current state-of-the-art methods.展开更多
Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human vi...Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.展开更多
Detection of cracks at the early stage is considered as very constructive since precautionary steps need to be taken to avoid the damage to the civil structures.Moreover,identifying and classifying the severity level ...Detection of cracks at the early stage is considered as very constructive since precautionary steps need to be taken to avoid the damage to the civil structures.Moreover,identifying and classifying the severity level of cracks is inevitable in order to find the stability of buildings.Hence,this paper proposes an efficient strategy to classify the cracks into fine,medium,and thick using a novel bilayer crack detection algorithm.The bilayer crack detection algorithm helps in extracting the requisite features from the crack for efficient classification.The proposed algorithm works well in the dark background and connects the discontinued cracks too.The first layer is used to detect cracks under texture variations and manufacturing defects,through segmented adaptive thresholding and morphological operations.The residual noise present in the output of the first layer is removed in the second layer of crack detection.The second layer includes the double scan and the noise reduction algorithms and is used to join the missed crack parts.As a result,a segmented crack is formed.Further classification is done using an ensemble classifier with bagging,and decision tree techniques by extracting the geometrical features and the weaker crack criterion from the segmented part.The results of the proposed technique are compared with the existing techniques for different datasets and have obtained a rise in True Positive Rate(TPR),accuracy and precision value.The proposed technique is also implemented in Raspberry Pi for further real-time evaluation.展开更多
Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;howe...Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.展开更多
Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the towe...Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the tower and other components,and even cause the tower to collapse.To achieve high-precision wind blade crack detection,this paper proposes a crack fault-detection strategy that integratesGated ResidualNetwork(GRN),a fusionmodule and Transformer.Firstly,GRNcan reduce unnecessary noisy inputs that could negatively impact performancewhile preserving the integrity of feature information.In addition,to gain in-depth information about the characteristics of wind turbine blades,a fusionmodule is suggested to implement the information fusion of wind turbine features.Specifically,each fan feature ismapped to a one-dimensional vector with the same length,and all one-dimensional vectors are concatenated to obtain a two-dimensional vector.And then,in the fusion module,the information fusion of the same characteristic variables in the different channels is realized through the Channel-mixing MLP,and the information fusion of different characteristic variables in the same channel is realized through the ColumnmixingMLP.Finally,the fused feature vector is input into the Transformer for feature learning,which enhances the influence of important feature information and improves the model’s anti-noise ability and classification accuracy.Extensive experimentswere conducted on the wind turbine supervisory control and data acquisition(SCADA)data froma domesticwind field.The results show that compared with other state-of-the-artmodels,including XGBoost,LightGBM,TabNet,etc.,the F1-score of proposed gated fusion based Transformer model can reach 0.9907,which is 0.4%-2.09% higher than the comparedmodels.Thismethod provides amore reliable approach for the condition detection and maintenance of fan blades in wind farms.展开更多
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr...This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.展开更多
Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis...Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality perc...The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.展开更多
With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection...With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection were analyzed considering cracks qualities.A computer program was developed by visual C++6.0 programming language to detect the cracks,which was tested by 15cases of bridge video images.The results indicate that the relative error is within 6%for cracks larger than 0.3 mm cracks and it is less than 10%for crack width between 0.2 mm and 0.3 mm.In addition,for the crack below 0.1 mm,the relative error is more than30%because the bridge is in safe stage and it is very difficult to detect the actual width of crack.展开更多
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen...This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.展开更多
Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied...Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied. At first, the wave propagation mechanisms in concrete were analyzed. Then, an active sensing system with integrated actuators/sensors was constructed. One PZT patch was used as an actuator to generate high frequency waves, and the other PZT patches were used as sensors to detect the propagating wave. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the intact structure from the recorded signal of the damaged structure. In the experimental study, progressive cracked damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. The results indicate that with the increasing number and severity of cracks, the magnitude of the sensor output decreases for the surface bonded PZT patches, and increases for the embedded PZT patches.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to est...The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to establish an efficient intelligent identification model for pavement cracks.The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix.It has been widely used in geotechnical engineering,computer vision,medicine,and other fields.However,there are three major problems in the application of neural networks to crack identification.There are too few layers,extracted crack features are not complete,and the method lacks the efficiency to calculate the whole picture.In this study,a fully convolutional neural network based on ResNet-101 is used to establish an intelligent identification model of pavement crack regions.This method,using a convolutional layer instead of a fully connected layer,realizes full convolution and accelerates calculation.The region proposals come from the feature map at the end of the base network,which avoids multiple computations of the same picture.Online hard example mining and data-augmentation techniques are adopted to improve the model’s recognition accuracy.We trained and tested Concrete Crack Images for Classification(CCIC),which is a public dataset collected using smartphones,and the Crack Image Database(CIDB),which was automatically collected using vehicle-mounted charge-coupled device cameras,with identification accuracy reaching 91.4%and 86.4%,respectively.The proposed model has a higher recognition accuracy and recall rate than Faster RCNN and different depth models,and can extract more complete and accurate crack features in CIDB.We also analyzed translation processing,fuzzy,scaling,and distorted images.The proposed model shows a strong robustness and stability,and can automatically identify image cracks of different forms.It has broad application prospects in practical engineering problems.展开更多
Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket model...Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket models are obtained by numerical experiments based on NASTRAN Code. A crack at different locations and of different magnitudes is imposed in the model at the underwater beams. Then, the modal evaluation parameters are calculated numerically, to illustrate the evaluation of modal parameter criteria used in jacket crack detection. The sensitivities of different modal parameters to different cracks are analyzed. A new technique is presented for predicting the approximate location of a breakage in the absence of the data of an intact model. This method can be used to detect a crack in underwater members by use of incomplete mode shapes of the top members of the jacket.展开更多
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
基金supported in part by the 14th Five-Year Project of Ministry of Science and Technology of China(2021YFD2000304)Fundamental Research Funds for the Central Universities(531118010509)Natural Science Foundation of Hunan Province,China(2021JJ40114)。
文摘Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.
基金supported by the National Natural Science Foundation of China under Grant No.62001004the Key Provincial Natural Science Research Projects of Colleges and Universities in Anhui Province under Grant No.KJ2019A0768+2 种基金the Key Research and Development Program of Anhui Province under Grant No.202104A07020017the Research Project Reserve of Anhui Jianzhu University under Grant No.2020XMK04the Natural Science Foundation of the Anhui Higher Education Institutions of China,No.KJ2019A0789.
文摘As a current popular method,intelligent detection of cracks is of great significance to road safety,so deep learning has gradually attracted attention in the field of crack image detection.The nonlinear structure,low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning.Therefore,an end-to-end deep convolutional neural network(AttentionCrack)is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels.The AttentionCrack network is built on U-Net based encoder-decoder architecture,and an attention mechanism is incorporated into the multi-scale convolutional feature to enhance the recognition of crack region.Additionally,a dilated convolution module is introduced in the encoder-decoder architecture to reduce the loss of crack detail due to the pooling operation in the encoder network.Furthermore,since up-sampling will lead to the loss of crack boundary information in the decoder network,a depthwise separable residual module is proposed to capture the boundary information of pavement crack.The AttentionCrack net on public pavement crack image datasets named CrackSegNet and Crack500 is trained and tested,the results demonstrate that the AttentionCrack achieves F1 score over 0.70 on the CrackSegNet and 0.71 on the Crack500 in average and outperforms the current state-of-the-art methods.
基金NCHRP Project,IDEA 223:Fatigue Crack Inspection using Computer Vision and Augmented Reality。
文摘Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.
文摘Detection of cracks at the early stage is considered as very constructive since precautionary steps need to be taken to avoid the damage to the civil structures.Moreover,identifying and classifying the severity level of cracks is inevitable in order to find the stability of buildings.Hence,this paper proposes an efficient strategy to classify the cracks into fine,medium,and thick using a novel bilayer crack detection algorithm.The bilayer crack detection algorithm helps in extracting the requisite features from the crack for efficient classification.The proposed algorithm works well in the dark background and connects the discontinued cracks too.The first layer is used to detect cracks under texture variations and manufacturing defects,through segmented adaptive thresholding and morphological operations.The residual noise present in the output of the first layer is removed in the second layer of crack detection.The second layer includes the double scan and the noise reduction algorithms and is used to join the missed crack parts.As a result,a segmented crack is formed.Further classification is done using an ensemble classifier with bagging,and decision tree techniques by extracting the geometrical features and the weaker crack criterion from the segmented part.The results of the proposed technique are compared with the existing techniques for different datasets and have obtained a rise in True Positive Rate(TPR),accuracy and precision value.The proposed technique is also implemented in Raspberry Pi for further real-time evaluation.
文摘Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.
基金supported by the Jiangsu Provincial Key R&D Programme(BE2020034)China Huaneng Group Science and Technology Project(HNKJ20-H72).
文摘Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the tower and other components,and even cause the tower to collapse.To achieve high-precision wind blade crack detection,this paper proposes a crack fault-detection strategy that integratesGated ResidualNetwork(GRN),a fusionmodule and Transformer.Firstly,GRNcan reduce unnecessary noisy inputs that could negatively impact performancewhile preserving the integrity of feature information.In addition,to gain in-depth information about the characteristics of wind turbine blades,a fusionmodule is suggested to implement the information fusion of wind turbine features.Specifically,each fan feature ismapped to a one-dimensional vector with the same length,and all one-dimensional vectors are concatenated to obtain a two-dimensional vector.And then,in the fusion module,the information fusion of the same characteristic variables in the different channels is realized through the Channel-mixing MLP,and the information fusion of different characteristic variables in the same channel is realized through the ColumnmixingMLP.Finally,the fused feature vector is input into the Transformer for feature learning,which enhances the influence of important feature information and improves the model’s anti-noise ability and classification accuracy.Extensive experimentswere conducted on the wind turbine supervisory control and data acquisition(SCADA)data froma domesticwind field.The results show that compared with other state-of-the-artmodels,including XGBoost,LightGBM,TabNet,etc.,the F1-score of proposed gated fusion based Transformer model can reach 0.9907,which is 0.4%-2.09% higher than the comparedmodels.Thismethod provides amore reliable approach for the condition detection and maintenance of fan blades in wind farms.
文摘This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.
基金supported by the scientific and technological key project in Henan Province (No.212102210148)Open fund of Key Laboratory of Grain Information Processing and Control (No.KFJJ-2018-101)
文摘Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
基金Hunan Provincial Science and Technology Innovation Leader Project,Grant/Award Number:2021RC4025National Natural ScienceFoundation of China,Grant/Award Number:51808209Hunan Provincial Innovation Foundation for Postgraduate,Grant/Award Number:QL20210106.
文摘The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.
基金Project(51178193)supported by the National Natural Science Foundation of ChinaProject(2009 353-344-570)supported by the Ministry of Transport of ChinaProject(2010-02-051)supported by the Transportation Department of Guangdong Province,China
文摘With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection were analyzed considering cracks qualities.A computer program was developed by visual C++6.0 programming language to detect the cracks,which was tested by 15cases of bridge video images.The results indicate that the relative error is within 6%for cracks larger than 0.3 mm cracks and it is less than 10%for crack width between 0.2 mm and 0.3 mm.In addition,for the crack below 0.1 mm,the relative error is more than30%because the bridge is in safe stage and it is very difficult to detect the actual width of crack.
文摘This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.
基金Funded by the National Natural Science Foundation of China (51178305)the Key Projects in the Science & Technology Pillar Program of Tianjin (11ZCKFSF00300)
文摘Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied. At first, the wave propagation mechanisms in concrete were analyzed. Then, an active sensing system with integrated actuators/sensors was constructed. One PZT patch was used as an actuator to generate high frequency waves, and the other PZT patches were used as sensors to detect the propagating wave. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the intact structure from the recorded signal of the damaged structure. In the experimental study, progressive cracked damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. The results indicate that with the increasing number and severity of cracks, the magnitude of the sensor output decreases for the surface bonded PZT patches, and increases for the embedded PZT patches.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
基金funded by the National Key Research and Development Program of China(No.2017YFC1501200)the National Natural Science Foundation of China(Nos.51678536,41404096)+2 种基金supported by Department of education’s Production-Study-Research combined innovation Funding-“Blue fire plan(Huizhou)”(CXZJHZ01742)the Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001).
文摘The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to establish an efficient intelligent identification model for pavement cracks.The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix.It has been widely used in geotechnical engineering,computer vision,medicine,and other fields.However,there are three major problems in the application of neural networks to crack identification.There are too few layers,extracted crack features are not complete,and the method lacks the efficiency to calculate the whole picture.In this study,a fully convolutional neural network based on ResNet-101 is used to establish an intelligent identification model of pavement crack regions.This method,using a convolutional layer instead of a fully connected layer,realizes full convolution and accelerates calculation.The region proposals come from the feature map at the end of the base network,which avoids multiple computations of the same picture.Online hard example mining and data-augmentation techniques are adopted to improve the model’s recognition accuracy.We trained and tested Concrete Crack Images for Classification(CCIC),which is a public dataset collected using smartphones,and the Crack Image Database(CIDB),which was automatically collected using vehicle-mounted charge-coupled device cameras,with identification accuracy reaching 91.4%and 86.4%,respectively.The proposed model has a higher recognition accuracy and recall rate than Faster RCNN and different depth models,and can extract more complete and accurate crack features in CIDB.We also analyzed translation processing,fuzzy,scaling,and distorted images.The proposed model shows a strong robustness and stability,and can automatically identify image cracks of different forms.It has broad application prospects in practical engineering problems.
文摘Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket models are obtained by numerical experiments based on NASTRAN Code. A crack at different locations and of different magnitudes is imposed in the model at the underwater beams. Then, the modal evaluation parameters are calculated numerically, to illustrate the evaluation of modal parameter criteria used in jacket crack detection. The sensitivities of different modal parameters to different cracks are analyzed. A new technique is presented for predicting the approximate location of a breakage in the absence of the data of an intact model. This method can be used to detect a crack in underwater members by use of incomplete mode shapes of the top members of the jacket.