2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to t...2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to the recovery of iodide(I-)from salt water by lower potential-aided sorption and desorption processes.The potential-aided recovery of I-at CuxO/MPM/GFs was characterized by FE-SEM,XRD,IR,Raman,XPS,UV-vis and electrochemical techniques in detail.The maximal adsorption capacity of 86.82 mg·g^-1 could be obtained with a pseudo-second-order model at 0.8 V for 210 min in pH 5.0,0.1 mol·L^-1 NaCl,and the process accompanied the generation of CuI,CuO and I5-.The I-could be quickly desorbed from the electrode with a transfer of CuI to Cu2O by cycle voltammetry from-1.0 to 0.5 V for 90 cycles in pH 9.0,0.1 mol·L^-1 KNO3.Thus,CuxO/MPM/GFs was renewable in the continuous electrochemical-adsorption-desorption processes.展开更多
Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliabil...Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliability of the self-sensing, electrical contact between the lead wire and the carbon fibers is the most important issue. The present study focuses on the effect of the cyclic loading of lower applied strain range than the fatigue damage level. As a result, the electrical contact resistance at the copper electrode increased with the increase of cycles. That means that the electrical change at the electrodes must be considered for the long-term self-sensing monitoring system. When a four-probe method is used to measure the electrical resistance, the contact resistance effect is minimized. Moreover, angle-ply laminates have plastic deformation caused by shear loading, and that causes electrical resistance decrease during the cyclic loading. Cross-ply laminates of CFRP composites have no electrical resistance increase without damage. Quasi-isotropic laminates of CFRP composites, however, have electrical resistance decrease with the increase of the number of cycles because of the plastic deformation of the angle-ply laminates.展开更多
In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was intro...In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode.At a cell voltage of 3.5 V and initial solution pH of 6.3,the TiO_(2)/Ni-Sb-SnO_(2)bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min^(-1)with 180 min by using stainless steel (SS) cathode,which was 1.5 and 2.4times higher than that of TiO_(2)photoanode and Ni-Sb-SnO_(2)anode,respectively.Moreover,both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98%from 86%and 73%from 41%after replacing SS cathode with ACF cathode,respectively.Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition,higher cell voltage and lower initial Ni-EDTA concentration.Ni-EDTA was mainly decomposed via·OH radicals which generated via the interaction of O_(3),H_(2)O_(2),and UV irradiation in the contrasted PEC system.Then,the liberated Ni^(2+)ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface.Finally,the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.展开更多
基金supported by the National Natural Science Foundation of China(U1407110)Anhui Province Key Research and Development Plan(JZ2018AKKG0332)。
文摘2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to the recovery of iodide(I-)from salt water by lower potential-aided sorption and desorption processes.The potential-aided recovery of I-at CuxO/MPM/GFs was characterized by FE-SEM,XRD,IR,Raman,XPS,UV-vis and electrochemical techniques in detail.The maximal adsorption capacity of 86.82 mg·g^-1 could be obtained with a pseudo-second-order model at 0.8 V for 210 min in pH 5.0,0.1 mol·L^-1 NaCl,and the process accompanied the generation of CuI,CuO and I5-.The I-could be quickly desorbed from the electrode with a transfer of CuI to Cu2O by cycle voltammetry from-1.0 to 0.5 V for 90 cycles in pH 9.0,0.1 mol·L^-1 KNO3.Thus,CuxO/MPM/GFs was renewable in the continuous electrochemical-adsorption-desorption processes.
文摘Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliability of the self-sensing, electrical contact between the lead wire and the carbon fibers is the most important issue. The present study focuses on the effect of the cyclic loading of lower applied strain range than the fatigue damage level. As a result, the electrical contact resistance at the copper electrode increased with the increase of cycles. That means that the electrical change at the electrodes must be considered for the long-term self-sensing monitoring system. When a four-probe method is used to measure the electrical resistance, the contact resistance effect is minimized. Moreover, angle-ply laminates have plastic deformation caused by shear loading, and that causes electrical resistance decrease during the cyclic loading. Cross-ply laminates of CFRP composites have no electrical resistance increase without damage. Quasi-isotropic laminates of CFRP composites, however, have electrical resistance decrease with the increase of the number of cycles because of the plastic deformation of the angle-ply laminates.
基金supported by the China Postdoctoral Science Foundation (No.2020M680710)the National Natural Science Foundation of China (No.22106173)。
文摘In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode.At a cell voltage of 3.5 V and initial solution pH of 6.3,the TiO_(2)/Ni-Sb-SnO_(2)bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min^(-1)with 180 min by using stainless steel (SS) cathode,which was 1.5 and 2.4times higher than that of TiO_(2)photoanode and Ni-Sb-SnO_(2)anode,respectively.Moreover,both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98%from 86%and 73%from 41%after replacing SS cathode with ACF cathode,respectively.Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition,higher cell voltage and lower initial Ni-EDTA concentration.Ni-EDTA was mainly decomposed via·OH radicals which generated via the interaction of O_(3),H_(2)O_(2),and UV irradiation in the contrasted PEC system.Then,the liberated Ni^(2+)ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface.Finally,the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.