期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Synthesis and Flocculation of Polyacrylamide with Low Water Absorption for Non-dispersible Underwater Concrete
1
作者 LI Hongling YAN Na +2 位作者 SUN Guowen ZHENG Haorui YANG Xinyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1404-1413,共10页
The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concr... The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concrete and strength shrinkage after hardening.Herein,a kind of anionic polyacrylamide(APAM)grafted with water reducing functional group(-COOH)was synthesized at low temperatures by partial factor design and response surface design.The structure and morphology of APAM were characterized by UV,FTIR and SEM methods.The experimental results show that the molecular weight of the synthesized APAM could reach 11 million,under the condition that the temperature was 35℃,the pH value was 8,the monomer concentration was 27wt%,the initiator dosage was 0.6wt%,and the monomer ratio(n(AM):n(AA))was 3.When the APAM was applied into the underwater slurry,it presented good flocculation and low water demand.When the dosage was 1%of the mass of the cement,the water demand increased by 12%,which could meet the self-leveling and anti-dispersity of the underwater slurry at the same time.This technology provides technical guidance for the large-scale industrial production of polyacrylamide for underwater concrete construction while achieving environmental protection during production. 展开更多
关键词 non-dispersible underwater concrete anionic polyacrylamide partial factor design response surfacedesign FLOCCULATION
下载PDF
Analysis on Pore Structure of Non-Dispersible Underwater Concrete in Saline Soil Area
2
作者 Fang Liu Baomin Wang +1 位作者 Mengsai Wang Xiaosa Yuan 《Journal of Renewable Materials》 SCIE EI 2021年第4期723-742,共20页
In this paper,mercury intrusion porosimetry(MIP)is used to test the pore structure of non-dispersible underwater concrete so as to study the influence of pouring and curing environment,age and slag powder on the pore ... In this paper,mercury intrusion porosimetry(MIP)is used to test the pore structure of non-dispersible underwater concrete so as to study the influence of pouring and curing environment,age and slag powder on the pore characteristics of concrete,analyze the pore characteristics,porosity and pore distribution of concrete in different hydration stages,and reveal the relationship between pore structure and permeability of concrete.The results show that the pore-size distribution of concrete in fresh water condition is better than that in sulfate environment and mixed salt environment,and therefore,sulfate as well as mixed salt are not conducive to the development of pore structure of non-dispersible underwater concrete;chlorine salt has little effect on the pore structure of nondispersible underwater concrete;under the three conditions of sulfate,chlorine and mixed salt,the porosity of concrete mixed with slag powder is lower than that of concrete without slag powder.The results indicate that the addition of slag powder can ameliorate the pore size distribution of non-dispersed underwater concrete,reduce the porosity,and make the concrete structure more compact,which is beneficial to improve the permeability resistance of concrete at the macro level. 展开更多
关键词 non-dispersible underwater concrete slag powder saline soil mercury intrusion porosimetry(mip) pore structure
下载PDF
Effect of GGBS on performance deterioration of non-dispersible underwater concrete in saline soil
3
作者 Fang Liu BaoMin Wang +2 位作者 GuoRong Tao Tao Luo XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2022年第2期120-137,共18页
In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible u... In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible underwater concrete in sulfate,chloride,and mixed salt environments,the compressive strength and deterioration resistance coefficient of the studied concrete mixed with different amounts of ground granulated blast-furnace slag(GGBS)were analyzed in this paper.At the same time,the micro morphology and corrosion products distribution of the studied concrete were observed by means of SEM,plus XRD diffraction,TG-DTG and FT-IR analyses to explore the influence of corrosive solutions on the hydration products of concrete.We also analyzed the mechanism of improving the deterioration resistance of the studied concrete by adding GGBS in a saline soil environment.The results show that the compressive strength of the studied concrete in a chloride environment was close to that in a fresh water environment,which means that chloride has no adverse effect on compressive strength.The deterioration of the studied concrete was most serious in a sulfate environment,followed by mixed salt environment,and the lowest in a chloride environment.In addition,by adding GGBS,the compressive strength and deterioration resistance of the studied concrete could be effectively improved. 展开更多
关键词 saline soil non-dispersible underwater concrete granulated blast furnace slag deterioration resistance mechanism analysis
下载PDF
Preparation of High Performance Non-dispersible Concrete 被引量:1
4
作者 姜丛盛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期67-69,共3页
A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results i... A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results indicate that NDA has a suitable workability,low strength loss,and excellent anti-dispersion;the fresh non-dispersible underwater concrete with NDA has high anti-dispersion,excellent workability such as self-compacting and not bleeding;hardened non-dispersible underwater concrete with NDA has a high strength,high durability such as high anti-abrasion,impermeability and anticorrosion. 展开更多
关键词 non-dispersible underwater concrete high performance ANTI-WASHOUT
下载PDF
水下不分散混凝土抗分散剂优化设计与凝结时间调控
5
作者 刘祥胜 纪厚祥 +3 位作者 郑圣飚 詹炳根 余其俊 李占甫 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第10期1427-1433,共7页
水下不分散混凝土(non-dispersible underwater concrete,NDC)为涉水工程的施工提供抗冲刷能力,为实现水下不分散混凝土性能的提升,文章探讨抗分散剂的优化设计和凝结时间的调控,选取聚丙烯酰胺(polyacrylamide,PAM)和羟丙基甲基纤维素(... 水下不分散混凝土(non-dispersible underwater concrete,NDC)为涉水工程的施工提供抗冲刷能力,为实现水下不分散混凝土性能的提升,文章探讨抗分散剂的优化设计和凝结时间的调控,选取聚丙烯酰胺(polyacrylamide,PAM)和羟丙基甲基纤维素(hydroxypropyl methyl cellulose,HPMC)作为抗分散剂主剂,聚羧酸减水剂、有机硅和聚醚类消泡剂作为辅剂,从抗分散性和流动性的角度对水下不分散混凝土抗分散剂的组成进行优化设计,同时选取碳酸锂和硫酸铝作为调凝剂,对水下不分散混凝土的凝剂时间进行调控。研究结果表明:采用HPMC作为主剂、聚羧酸减水剂和聚醚类消泡剂作为辅剂制备抗分散剂,可以使得水下不分散混凝土具有较好的抗分散性和流动性;其中,含水泥质量分数0.45%的HPMC和1%聚羧酸减水剂的新拌水泥砂浆(水胶质量比为0.5,胶砂质量比为2)表现出优异的抗分散性和良好的流动性,其pH值为9,扩展度为150 mm;在该体系中,硫酸铝的调凝效果较好且经济效益更高,但使用时用量应少于2%。对抗分散剂的优化设计和凝结时间的调控为水下不分散混凝土的相关实验研究提供了重要参考。 展开更多
关键词 水下不分散混凝土(ndc) 抗分散剂 减水剂 凝结时间
下载PDF
水下不分散混凝土的应用研究 被引量:19
6
作者 刘军 方惠琦 贺鸿珠 《建筑材料学报》 EI CAS CSCD 2000年第4期360-365,共6页
通过实验室和工程实例 ,研究了采用絮凝剂或聚合剂制成的水下不分散混凝土(nondispersibleunderwaterconcrete ,NDC)的性能 .结果发现 ,此类混凝土性能优异 ,与普通混凝土相比 ,其自身的内聚力较高 ,抗水分散性较好 ,可以解决水下混凝... 通过实验室和工程实例 ,研究了采用絮凝剂或聚合剂制成的水下不分散混凝土(nondispersibleunderwaterconcrete ,NDC)的性能 .结果发现 ,此类混凝土性能优异 ,与普通混凝土相比 ,其自身的内聚力较高 ,抗水分散性较好 ,可以解决水下混凝土的质量问题 . 展开更多
关键词 水下不分散混凝土 普通混凝土 混凝土性能 水下混凝土 工程实例 质量问题 絮凝剂 水分散性 聚合 应用研究
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部