The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions. The optical chaotic communication system with open-loop configuration is studied using fiber tr...The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions. The optical chaotic communication system with open-loop configuration is studied using fiber transmission under strong injection conditions. The performances of fiber links composed of two types of fiber segments in different dispersion compensation maps are compared by testing the quality of the recovered message with different bit rates and encrypted by chaotic modulation (CM) or chaotic shift keying (CSK). The result indicates that the performance of the pre-compensation map is always worst. Two types of symmetrical maps are identical whatever the encryption method and bit-rate of message are. For the transmitting and the recovering of message of lower bit rate (1 Gb/s), the post-compensation map is the best scheme. However, for the message of higher bit rate (2.5 Gb/s), the parameters in communication system need to be modified properly in order to adapt to the high-speed application. Meanwhile, two types of symmetrical maps are the best scheme. In addition, the CM method is superior to the CSK method for high-speed applications. It is in accordance with the result in a back-to-back configuration system.展开更多
Selecting a cost optimum subset of discrete-value dispersion compensation modules (DV-DCMs) subject to maximum module count from an available set of DV-DCMs is a NP-hard problem. We derive a novel dynamic programming ...Selecting a cost optimum subset of discrete-value dispersion compensation modules (DV-DCMs) subject to maximum module count from an available set of DV-DCMs is a NP-hard problem. We derive a novel dynamic programming algorithm with pseudo-polynomial time bound and show that DV-DCM cost re-scaling can improve the running time.展开更多
We present a novel configuration for carrier suppressed return-to-zero (CSRZ) signal generation, which only requires a single stage Mach-Zehnder (MZ) modulator in conjunction with an electrical mixer. Electrical band-...We present a novel configuration for carrier suppressed return-to-zero (CSRZ) signal generation, which only requires a single stage Mach-Zehnder (MZ) modulator in conjunction with an electrical mixer. Electrical band-limiting is also introduced to increase dispersion tolerance without causing additional penalty due to nonlinear effects in long haul dense wavelength division multiplexed (DWDM) CSRZ systems using conventional launch power levels.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60872123)the Joint Fund of the National Natural Science Foundation and the Guangdong Provincial Natural Science Foundation, China (Grant No. U0835001)the Guangdong Provincial Natural Science Foundation (Grant No. S2011010002144)
文摘The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions. The optical chaotic communication system with open-loop configuration is studied using fiber transmission under strong injection conditions. The performances of fiber links composed of two types of fiber segments in different dispersion compensation maps are compared by testing the quality of the recovered message with different bit rates and encrypted by chaotic modulation (CM) or chaotic shift keying (CSK). The result indicates that the performance of the pre-compensation map is always worst. Two types of symmetrical maps are identical whatever the encryption method and bit-rate of message are. For the transmitting and the recovering of message of lower bit rate (1 Gb/s), the post-compensation map is the best scheme. However, for the message of higher bit rate (2.5 Gb/s), the parameters in communication system need to be modified properly in order to adapt to the high-speed application. Meanwhile, two types of symmetrical maps are the best scheme. In addition, the CM method is superior to the CSK method for high-speed applications. It is in accordance with the result in a back-to-back configuration system.
文摘Selecting a cost optimum subset of discrete-value dispersion compensation modules (DV-DCMs) subject to maximum module count from an available set of DV-DCMs is a NP-hard problem. We derive a novel dynamic programming algorithm with pseudo-polynomial time bound and show that DV-DCM cost re-scaling can improve the running time.
文摘We present a novel configuration for carrier suppressed return-to-zero (CSRZ) signal generation, which only requires a single stage Mach-Zehnder (MZ) modulator in conjunction with an electrical mixer. Electrical band-limiting is also introduced to increase dispersion tolerance without causing additional penalty due to nonlinear effects in long haul dense wavelength division multiplexed (DWDM) CSRZ systems using conventional launch power levels.