Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very diff...Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.展开更多
Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NS...Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t...Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA.展开更多
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating...Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved w...This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved with non-dominated sorting genetic algorithm Ⅱ, from which the Pareto fronts, the optimal technology combinations and operation conditions were obtained and analyzed. It's found that the system is feasible in both environmental and economic considerations after optimization. The most expensive processing section is decarbonization; the most expensive equipment is anaerobic digester; the most power-consuming processing section is digestion, followed by decarbonization and waste management. The positive green degree value on the process is attributed to processing section of digestion and waste management. 3:1 chicken feces and corn straw, solar energy, pressure swing adsorption and 3:1 chicken feces and rice straw, solar energy, pressure swing adsorption are turned out to be two robust technology combinations under different prices of methane and electricity by sensitivity analysis. The optimization results provide support for optimal design and operation of biogas production system considering environmental and economic objectives.展开更多
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes...Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.展开更多
The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, has been proposed at the Institute of High Energy Physics, Beijing. As one important component of the ...The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, has been proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector was designed and preliminarily optimized. In this paper an evolutionary genetic method, non-dominated sorting genetic algorithm II, is applied to optimize the injector beam dynamics, especially in the high-charge operation mode. Study shows that using an incident laser with rms transverse size of 1-1.2 ram, the normalized emittance of the electron beam can be kept below 1 mm.mrad at the end of the injector. This work, together with the previous optimization of the low-charge operation mode by using the iterative scan method, provides guidance and confidence for future construction and commissioning of the ERL-TF injector.展开更多
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A...Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.展开更多
The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal plan...The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.展开更多
Multi-objective dimensional optimization of parallel kinematic manipulators(PKMs) remains a challenging and worthwhile research endeavor. This paper presents a straightforward and systematic methodology for implementi...Multi-objective dimensional optimization of parallel kinematic manipulators(PKMs) remains a challenging and worthwhile research endeavor. This paper presents a straightforward and systematic methodology for implementing the structure optimization analysis of a 3-prismatic-universal-universal(PUU) PKM when simultaneously considering motion transmission, velocity transmission and acceleration transmission. Firstly, inspired by a planar four-bar linkage mechanism, the motion transmission index of the spatial parallel manipulator is based on transmission angle which is defined as the pressure angle amongst limbs. Then, the velocity transmission index and acceleration transmission index are derived through the corresponding kinematics model. The multi-objective dimensional optimization under specific constraints is carried out by the improved non-dominated sorting genetic algorithm(NSGA Ⅱ), resulting in a set of Pareto optimal solutions. The final chosen solution shows that the manipulator with the optimized structure parameters can provide excellent motion, velocity and acceleration transmission properties.展开更多
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
文摘Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.
文摘Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
基金supported by the Guangdong Joint fund for basic and applied basic research(Guangdong-dongguan,Grant Number 2019B1515120069,2019).
文摘Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA.
文摘Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
基金Supported by the National Natural Science Fund for Distinguished Young Scholars(21425625)the National Basic Research Program of China(2013CB733506,2015CB251403)+1 种基金the National Natural Science Foundation of China(U1610222)the Beijing Hundreds of Leading Talents Training Project of Science and Technology(Z171100001117154)
文摘This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved with non-dominated sorting genetic algorithm Ⅱ, from which the Pareto fronts, the optimal technology combinations and operation conditions were obtained and analyzed. It's found that the system is feasible in both environmental and economic considerations after optimization. The most expensive processing section is decarbonization; the most expensive equipment is anaerobic digester; the most power-consuming processing section is digestion, followed by decarbonization and waste management. The positive green degree value on the process is attributed to processing section of digestion and waste management. 3:1 chicken feces and corn straw, solar energy, pressure swing adsorption and 3:1 chicken feces and rice straw, solar energy, pressure swing adsorption are turned out to be two robust technology combinations under different prices of methane and electricity by sensitivity analysis. The optimization results provide support for optimal design and operation of biogas production system considering environmental and economic objectives.
基金supported by the Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT)under the Ministry of Trade,Industry and Energy (MOTIE)of Republic of Korea (20012121)by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MSIT) (2022M3J7A106294)。
文摘Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.
文摘The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, has been proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector was designed and preliminarily optimized. In this paper an evolutionary genetic method, non-dominated sorting genetic algorithm II, is applied to optimize the injector beam dynamics, especially in the high-charge operation mode. Study shows that using an incident laser with rms transverse size of 1-1.2 ram, the normalized emittance of the electron beam can be kept below 1 mm.mrad at the end of the injector. This work, together with the previous optimization of the low-charge operation mode by using the iterative scan method, provides guidance and confidence for future construction and commissioning of the ERL-TF injector.
文摘Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.
文摘The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.
基金supported by National Natural Science Foundation of China (Nos. 51575544 and 51275353)the Macao Science and Technology Development Fund (No. 110/2013/A3)Research Committee of University of Macao (Nos. MYRG2015-00194-FST and MYRG203 (Y1-L4)-FST11-LYM)
文摘Multi-objective dimensional optimization of parallel kinematic manipulators(PKMs) remains a challenging and worthwhile research endeavor. This paper presents a straightforward and systematic methodology for implementing the structure optimization analysis of a 3-prismatic-universal-universal(PUU) PKM when simultaneously considering motion transmission, velocity transmission and acceleration transmission. Firstly, inspired by a planar four-bar linkage mechanism, the motion transmission index of the spatial parallel manipulator is based on transmission angle which is defined as the pressure angle amongst limbs. Then, the velocity transmission index and acceleration transmission index are derived through the corresponding kinematics model. The multi-objective dimensional optimization under specific constraints is carried out by the improved non-dominated sorting genetic algorithm(NSGA Ⅱ), resulting in a set of Pareto optimal solutions. The final chosen solution shows that the manipulator with the optimized structure parameters can provide excellent motion, velocity and acceleration transmission properties.