期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
1
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm- (Gnsga- Vehicle routing problem (VRP) Multi-objective optimization
下载PDF
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计
2
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法nsga- 扬程 效率
下载PDF
基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化 被引量:2
3
作者 卓文波 谭国笔 +4 位作者 陈秋任 侯泽宏 王显会 韩维建 黄理 《焊接学报》 EI CAS CSCD 北大核心 2024年第4期20-25,I0004,共7页
为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程... 为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程回归和BP神经网络建立起焊接工艺参数与焊接接头质量评价指标之间关系的代理模型,训练的结果显示模型精度很高.最后利用带精英策略的非支配排序的遗传算法NSGA-Ⅱ实现多目标优化,得到各评价指标之间的最优pareto解集.经验证,各评价模型的相对误差值都很小.结果表明,该优化方法有较好的预测效果和稳定性.通过使用较少的试验数据,建立优化模型的方法对电阻点焊及其它焊接领域最佳焊接工艺参数的选取具有重要的指导价值. 展开更多
关键词 多目标优化 电阻点焊工艺参数 代理模型 非支配排序遗传算法
下载PDF
基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划
4
作者 陈广玲 张天赐 +2 位作者 付涛 王林涛 宋学官 《现代制造工程》 CSCD 北大核心 2024年第2期142-149,共8页
为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使... 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。 展开更多
关键词 智能化电铲 动力学模型 非支配排序遗传算法 挖掘轨迹规划 多目标优化
下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究
5
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(nsga-) 多目标优化 平均传动压力角 传动效率
下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
6
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于强化学习的改进NSGA-Ⅱ算法的城市快速路入口匝道控制
7
作者 陈娟 郭琦 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期666-680,共15页
为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争... 为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争结构的深度Q网络(dueling deep Q network, Dueling DQN)、深度循环Q网络(deep recurrent Q network, DRQN)和NSGA-Ⅱ算法,将Dueling DRQN-NSGA-Ⅱ算法用于匝道控制问题.除了考虑匝道车辆汇入以提高快速路通行效率外,还考虑了环境和能源指标,将尾气排放和燃油消耗作为评价指标.除了与无控制情况及其他算法进行比较之外, Dueling DRQN-NSGA-Ⅱ还与NSGA-Ⅱ算法进行了比较.实验结果表明:与无控制情况相比,本算法能有效改善路网通行效率、缓解环境污染、减少能源损耗;相对于无控制情况,总花费时间(total time spent, TTS)减少了16.14%,总尾气排放(total emissions, TE)减少了9.56%,总燃油消耗(total fuel consumption, TF)得到了43.49%的改善. 展开更多
关键词 匝道控制 基于竞争结构的深度Q网络 深度循环Q网络 非支配排序遗传算法
下载PDF
基于改进NSGA-Ⅱ的铁路项目进度计划多目标优化
8
作者 周国华 马依婷 《工业工程》 北大核心 2023年第4期85-95,共11页
以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化... 以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化精英选择策略,以提高种群多样性和收敛性;同时引入差分进化算法的变异、交叉算子,构造分层多策略自适应变异、交叉算子,以平衡整个种群的局部搜索能力和全局搜索能力.结果表明,增加对特殊活动和施工方向的考虑,可增强模型对铁路项目的适用性;改进后的算法收敛速度快,运行稳定,得到的结果更优,能够满足较大规模铁路项目进度计划优化. 展开更多
关键词 重复性项目调度 nsga-算法 工期-费用 多目标优化
下载PDF
基于NSGA-Ⅱ与方案优选的机场航站楼大跨度钢结构多目标优化研究 被引量:5
9
作者 王星星 于竞宇 +3 位作者 毛江峰 丁文轩 周文武 黄松 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第7期941-949,共9页
为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building informatio... 为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building information modeling,BIM)技术和工作分解结构(work breakdown structure,WBS)技术,构建兼具优化与施工仿真模拟的大跨度钢结构多目标优化体系;以某军民合用机场为例,应用该体系确定该工程航站楼大跨度网架结构安装采用分块安装法,优选出的施工方案较优化前不仅质量水平保持在较高的0.95,而且工期缩短22 d、成本减少57625元,进一步验证了该体系具有很好的可行性与有效性。研究结果可为科学合理地确定大跨度钢结构施工方案提供依据,并有助于提高机场航站楼施工管理水平,为类似工程提供参考。 展开更多
关键词 大跨度钢结构 多目标优化 非支配排序遗传算法(nsga-) 建筑信息模型(BIM) 工作分解结构(WBS)
下载PDF
基于超平面NSGA-Ⅱ的双输入双降压逆变器系统参数优化设计 被引量:1
10
作者 李煌 葛红娟 +1 位作者 马莹 王永帅 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第3期606-615,共10页
针对第二代非支配排序遗传算法(NSGA-Ⅱ)计算过程中存在种群分布不均匀、收敛性速度较慢的问题,提出超平面NSGA-Ⅱ(HP-NSGA-Ⅱ).该算法通过连接反映种群边缘分布的极值点构造超平面,以其法向量为进化趋势,对临界层个体在超平面进行投影... 针对第二代非支配排序遗传算法(NSGA-Ⅱ)计算过程中存在种群分布不均匀、收敛性速度较慢的问题,提出超平面NSGA-Ⅱ(HP-NSGA-Ⅱ).该算法通过连接反映种群边缘分布的极值点构造超平面,以其法向量为进化趋势,对临界层个体在超平面进行投影,促使种群朝着分布均匀且收敛良好的最优解进化.以双输入双降压型逆变器(DIDBI)为多目标优化对象,开关损耗、输出电压总谐波失真和滤波元件体积为优化目标,依据谐振频率、电感电流纹波和功率因数的要求,推导出滤波电容、滤波电感和开关频率的约束条件,比较分析HP-NSGA-Ⅱ与NSGA-Ⅱ、考虑各目标重要度的γ-NSGA-Ⅱ的应用场合和价值.以某型逆变器样机为例,开展参数优化设计实验研究,结果表明了设计的有效性与正确性. 展开更多
关键词 双输入双降压型逆变器(DIDBI) 超平面第二代非支配排序遗传算法(HP-nsga-) 多目标 系统参数
下载PDF
基于NSGA-Ⅱ的电力信息物理系统骨干网络辨识 被引量:3
11
作者 蔡晔 汤丽 +2 位作者 唐夏菲 陈洋 曹一家 《电力系统自动化》 EI CSCD 北大核心 2023年第12期38-46,共9页
针对实际存在一一对应的电力信息物理系统,辨识其抗灾型骨干网架并进行加固,可提高电力信息物理系统在面对自然灾害或网络攻击下的可靠性。文中提出骨干网络辨识多目标优化模型,所提模型综合考虑整个系统的经济性、抗毁性和恢复性,并满... 针对实际存在一一对应的电力信息物理系统,辨识其抗灾型骨干网架并进行加固,可提高电力信息物理系统在面对自然灾害或网络攻击下的可靠性。文中提出骨干网络辨识多目标优化模型,所提模型综合考虑整个系统的经济性、抗毁性和恢复性,并满足重要负荷约束、网络连通性约束、网络规模约束和潮流约束。首先,使用改进的非支配排序遗传算法(NSGA-Ⅱ)求解多目标优化模型,并利用多目标决策中的熵权法给各个目标函数赋权重。然后,使用逼近理想解排序法筛选出帕累托解集中的最优解。最后,以IEEE 39节点系统和中国某地区500 kV实际电网为例,验证了所提的电力信息物理系统骨干网络辨识算法的有效性。 展开更多
关键词 电力信息物理系统 骨干网络 改进的非支配排序遗传算法 多目标优化 熵权-TOPSIS
下载PDF
基于改进NSGA-Ⅱ的考虑自动引导车充电策略的集成调度 被引量:2
12
作者 薛海蓉 韩晓龙 《计算机应用》 CSCD 北大核心 2023年第12期3848-3855,共8页
针对自动引导车(AGV)在自动化集装箱码头(ACT)执行任务过程中的电量问题,提出基于改进的非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)的考虑AGV充电策略的集成调度。首先,在岸桥、场桥和AGV集成调度模式下,考虑AGV在不同作业状态下的耗电量,并建立... 针对自动引导车(AGV)在自动化集装箱码头(ACT)执行任务过程中的电量问题,提出基于改进的非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)的考虑AGV充电策略的集成调度。首先,在岸桥、场桥和AGV集成调度模式下,考虑AGV在不同作业状态下的耗电量,并建立以最小化作业完工时间和总耗电量为目标的多目标混合规划模型;其次,为提高传统NSGA-Ⅱ的性能,设计自适应NSGA-Ⅱ,并将所提算法与CPLEX求解器、NSGA-Ⅱ和多目标粒子群优化(MOPSO)算法进行性能对比;最后,设计AGV不同充电策略并对设备数量配比进行实验研究。算法对比实验结果表明:相较于传统NSGA-Ⅱ算法,自适应NSGA-Ⅱ对双目标的优化分别提升了2.8%和2.63%。利用自适应NSGA-Ⅱ进行的充电策略和设备数量配比实验的结果表明:增加AGV充电次数能够减少AGV的充电时间,且调整设备数量配比至3∶3∶9和3∶7∶3时,场桥和AGV的时间利用率分别达到最高。可见,AGV充电策略及设备数量配比对码头多设备集成调度有一定影响。 展开更多
关键词 自动化集装箱码头 自动引导车 充电策略 码头集成调度 自适应非支配排序遗传算法- 耗电量
下载PDF
Optimization of dynamic aperture by using non-dominated sorting genetic algorithm-Ⅱ in a diffraction-limited storage ring with solenoids for generating round beam
13
作者 Chongchong Du Sheng Wang +2 位作者 Jiuqing Wang Saike Tian Jinyu Wan 《Radiation Detection Technology and Methods》 CSCD 2023年第2期271-278,共8页
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t... Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA. 展开更多
关键词 Diffraction-limited storage rings Round beam non-dominated sorting genetic algorithm- High energy photon source
原文传递
基于NSGA-Ⅱ的二氧化碳氢化反应热力学多目标优化
14
作者 何峰 余玉翔 +1 位作者 陈卫红 霍仁杰 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期38-47,共10页
二氧化碳氢化合成低碳烯烃反应是化学储能技术路径中重要的单元反应,二氧化碳首先与由可再生能源获得的氢气进行化学反应合成低碳烯烃,随后通过齐聚反应将能量储存到清洁燃料中。以二氧化碳氢化合成低碳烯烃反应为研究对象,使用Gibbs自... 二氧化碳氢化合成低碳烯烃反应是化学储能技术路径中重要的单元反应,二氧化碳首先与由可再生能源获得的氢气进行化学反应合成低碳烯烃,随后通过齐聚反应将能量储存到清洁燃料中。以二氧化碳氢化合成低碳烯烃反应为研究对象,使用Gibbs自由能最小化方法进行了平衡热力学分析,得到反应温度、反应压力、进料气H2与CO_(2)的物质的量比对CO_(2)平衡转化率、低碳烯烃选择性及平衡组分的影响;基于统计学理论建立了反应参数对CO_(2)平衡转化率、低碳烯烃选择性和反应系统中H2O平衡摩尔分数的回归函数模型;最后采用基于快速非支配排序遗传算法(NSGA-Ⅱ)的多目标优化方法对反应系统性能进行多目标优化。结果表明:从提高反应系统性能和降低催化剂水解失效风险角度进行的多目标优化与CO_(2)平衡转化率最大的单目标优化相比,H2O的平衡摩尔分数从47.2%减少到24.9%;与低碳烯烃选择性最大的单目标优化相比,H2O的平衡摩尔分数从51.1%减少到18.7%;与H2O平衡摩尔分数最小的单目标优化相比,CO_(2)平衡转化率和低碳烯烃选择性从64.9%和8.7%分别提高到72.9%和58.6%。 展开更多
关键词 二氧化碳 低碳烯烃 统计学理论 多目标优化 快速非支配排序遗传算法(nsga-)
下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
15
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm (nsga-)
下载PDF
多目标遗传算法NSGA-Ⅱ在某双前桥转向机构优化设计中的应用 被引量:8
16
作者 周红妮 冯樱 +1 位作者 胡群 赵慧勇 《机械设计与制造》 北大核心 2015年第11期140-143,共4页
针对东风某双前桥转向重型汽车在使用中存在的轮胎异常磨损问题,利用ADAMS/View软件建立了样车双前桥转向机构参数化仿真模型,基于选择的设计变量与目标函数,在iSIGHT软件中通过集成ADAMS/View模型,对设计变量进行了DOE分析,并利用改进... 针对东风某双前桥转向重型汽车在使用中存在的轮胎异常磨损问题,利用ADAMS/View软件建立了样车双前桥转向机构参数化仿真模型,基于选择的设计变量与目标函数,在iSIGHT软件中通过集成ADAMS/View模型,对设计变量进行了DOE分析,并利用改进的非支配排序遗传算法NSGA-Ⅱ实现了双前桥转向机构的多目标优化,根据Pareto最优解得到仿真结果表明:优化后各车轮转角误差大大减小,可有效解决车轮异常磨损问题。利用多目标遗传算法和计算机仿真集成技术对转向机构进行优化设计,可为今后汽车系统的设计、开发提供新的有效途径。 展开更多
关键词 双前桥转向机构 多目标优化设计 nsga-遗传算法 iSIGHT集成 genetic algorithm nsga-
下载PDF
NSGA-Ⅱ算法的改进策略研究 被引量:26
17
作者 陈婕 熊盛武 林婉如 《计算机工程与应用》 CSCD 北大核心 2011年第19期42-45,共4页
带精英策略的非支配排序遗传算法(NSGA-Ⅱ)在多目标优化领域具有广泛的应用,但该算法种群收敛分布不均匀,全局搜索能力较弱,算法运行速度较慢。针对这些局限性提出了改进的排序适应度策略、算术交叉算子策略、按需分层策略和设定阈值选... 带精英策略的非支配排序遗传算法(NSGA-Ⅱ)在多目标优化领域具有广泛的应用,但该算法种群收敛分布不均匀,全局搜索能力较弱,算法运行速度较慢。针对这些局限性提出了改进的排序适应度策略、算术交叉算子策略、按需分层策略和设定阈值选择策略。在典型的测试函数集上的数值实验结果表明,根据这些策略改进的算法得到的非劣解集具有较好的分布性,同时收敛速度更快。 展开更多
关键词 多目标优化算法 带精英策略的非支配排序遗传算法(nsga-) PARETO最优
下载PDF
采用NSGA-Ⅱ混合智能算法的风电场多目标电网规划 被引量:69
18
作者 王茜 张粒子 《中国电机工程学报》 EI CSCD 北大核心 2011年第19期17-24,共8页
风电并网在实现节约化石能源和减少有害气体排放等效益的同时,也将对电力系统的可靠性造成一定的负面影响。为达到投资经济性、系统可靠性、环保效果的整体最优,构建了多目标风电场接入的输电线路与电网的联合优化规划模型;针对目标权... 风电并网在实现节约化石能源和减少有害气体排放等效益的同时,也将对电力系统的可靠性造成一定的负面影响。为达到投资经济性、系统可靠性、环保效果的整体最优,构建了多目标风电场接入的输电线路与电网的联合优化规划模型;针对目标权重未知、人工神经网络(artificial neuralnetwork,ANN)收敛困难、无法合理决策等问题,采用方差最大化决策和分类逼近理想解的排序方法(technique fororder preference by similarity to an ideal solution,TOPSIS)缩小最优解的范围,并在此基础上提出了随机模拟、神经元网络和非劣排序遗传算法II(non-dominated sorting geneticalgorithm II,NSGA-Ⅱ)相结合的混合智能算法;对增加风电场的改进IEEE Garver-6系统进行计算分析,结果表明该方法具有较高的决策效率和计算精度,从而验证了所提出模型和方法的合理性和有效性。 展开更多
关键词 多目标优化 并网风电场 电网规划 非劣排序遗 传算法 混合智能算法
下载PDF
基于NSGA-Ⅱ的化工园区无约束双目标安全规划 被引量:8
19
作者 许铭 吴宗之 +2 位作者 多英全 魏利军 谢振华 《高校化学工程学报》 EI CAS CSCD 北大核心 2010年第5期858-864,共7页
化工园区安全规划是一个复杂的多目标决策问题,降低潜在事故风险、保证较高经济收益是化工园区安全规划的两个主要目标。应用多目标决策的理论方法,以潜在死亡人数最小化、工业总产值最大化为优化目标,建立了化工园区安全规划无约束双... 化工园区安全规划是一个复杂的多目标决策问题,降低潜在事故风险、保证较高经济收益是化工园区安全规划的两个主要目标。应用多目标决策的理论方法,以潜在死亡人数最小化、工业总产值最大化为优化目标,建立了化工园区安全规划无约束双目标优化模型。选用非劣排序遗传算法-Ⅱ(NSGA-II)求解该模型,得出如下结论:(1)建立的化工园区安全规划无约束双目标优化模型是可行的。(2)采用的NSGA-Ⅱ算法是有效的优化方法。(3)无约束情况下,示例中的化工园区只布置甲类、乙类易燃液体存储地块,优先布置乙类易燃液体存储地块,不布置其他类型工业用地。 展开更多
关键词 非劣排序遗传算法-(nsga-) 化工园区 无约束双目标优化 土地利用安全规划
下载PDF
基于NSGA-Ⅱ算法的白洋淀上游种植结构优化 被引量:11
20
作者 王璐 杜雄 +3 位作者 王荣 杨艳敏 胡玉昆 侯振军 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2021年第8期1370-1383,共14页
合理的种植结构是实现区域水资源及土地资源优化配置的基础。针对白洋淀上游水资源紧缺、种植结构不合理等问题,结合当前主要作物种植结构现状,本研究以作物种植面积为优化变量,以水资源、土地资源、社会需求等为约束条件,以经济效益、... 合理的种植结构是实现区域水资源及土地资源优化配置的基础。针对白洋淀上游水资源紧缺、种植结构不合理等问题,结合当前主要作物种植结构现状,本研究以作物种植面积为优化变量,以水资源、土地资源、社会需求等为约束条件,以经济效益、生态效益最大及总灌溉耗水量最小为目标,构建基于非支配排序遗传算法(NSGA-Ⅱ)的作物种植结构多目标调整模型,并提出了针对白洋淀上游平原区、山区等不同水资源限制和农业机械化程度情景下的种植结构调整优化方案。研究结果表明,在平原区现状机械化水平下,在不限制用水的情景下,可以通过调减一年两作的种植面积,增加蔬菜和绿豆-鲜食玉米等的种植面积,达到提高经济效益12.6%的目的,而生态效益和节水效益都有所降低。在限水情景下,小麦-玉米调减比例增加,调增绿豆-鲜食玉米、春季甘薯、蔬菜和果蔬的面积,实现经济效益和节水效益的提高;而要达到节水20%的目标,所有作物的种植面积都要缩减,高耗水种植制度小麦-玉米种植面积缩减比例达21.5%,同时经济效益和生态效益都下降。在未来提高机械化水平的情景下,调整优化后的经济效益相比现状机械化水平提高或下降减少。在山区所有情景下,小麦-玉米种植面积随着对水分限制水平(不限水—小于现状水资源—节水20%)的增加调减比例增加,同时增加果树的种植面积。在山区可以通过种植结构的调整达到既节水20%,同时经济效益提高的目标,这是平原区所不能达到的。总之,无论是平原区还是山区,均是在不限水情景下优化后的经济效益、生态效益相对较高,而节水越多,优化后的经济效益、生态效益增幅越小、降幅越大。并且在平原区如果在节水要求不高的情景下应适当增加蔬菜面积,减少粮食种植面积;在节水要求高的情景下应削减所有作物包括水果、蔬菜的种植面积,在山区应该适当削减粮食种植面积,扩大果树的种植面积。该研究不仅可为研究区未来作物种植结构调整提供决策依据,也为在类似地区种植结构调整和水资源优化管理提供了新的情景参考。 展开更多
关键词 nsga-算法 种植结构 经济效益 生态效益 水资源优化
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部