期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
1
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
2
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
3
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
4
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
5
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(CatBoost) 第三代非支配排序遗传算法(nsga-) 盾构姿态 多目标优化 重要性排序
下载PDF
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制
6
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 CatBoost-nsga-算法
下载PDF
基于NSGA-Ⅲ的机器人气囊抛光工具结构动力学多目标优化
7
作者 焦培俊 姜晨 +1 位作者 姜臻禹 周勇宇 《轻工机械》 CAS 2024年第3期37-45,53,共10页
为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分... 为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分析对薄弱结构进行谐波激励得到工况下的振动响应加速度;建立动力学近似模型,以提高基频、降低质量及加速度响应为目标,分别采用非支配排序遗传算法NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ)和多目标粒子群算法(multi-objective particle swarm optimization, MOPSO)对薄弱结构进行多目标优化,获得最优动力响应的参数组合。结果表明:NSGA-Ⅲ具有更好的优化效果,基频提高了21.62%;4个薄弱部位的最大加速度响应分别下降了73.78%,69.06%,56.15%和28.28%;质量减少了3.32%。该方法有效提高了抛光工具的动态特性。 展开更多
关键词 机器人 气囊抛光 结构动力学 nsga- 近似模型 谐波激励
下载PDF
基于NSGA-Ⅲ算法的低影响开发措施规划设计
8
作者 张慧颖 任亚铮 +6 位作者 胡朝仲 毛谨 张淼 马自飞 程阳 李雪龙 范俊楠 《扬州大学学报(自然科学版)》 CAS 2024年第3期1-9,共9页
为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表... 为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表径流系数、管道过载时间、节点溢流量等3个城市内涝指标和总投资成本作为优化目标进行求解.结果表明:该优化模型可实现多目标同步优化,获得效益较高的低影响开发(low impact development,LID)措施的设计方案,优化后地表径流系数为0.309~0.355,管道过载时间为23.834~27.967 h,节点溢流量为10477~21802 m^(3),工程总投资成本为7.479亿~9.593亿元.研究结果可为未来海绵城市内涝控制设计提供技术参考. 展开更多
关键词 城市内涝 低影响开发 第三代非支配排序遗传算法 雨洪管理模型 优化设计
下载PDF
基于改进NSGA-Ⅲ的多目标联邦学习进化算法 被引量:2
9
作者 钟佳淋 吴亚辉 +2 位作者 邓苏 周浩浩 马武彬 《计算机科学》 CSCD 北大核心 2023年第4期333-342,共10页
联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ... 联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ算法。首先构建联邦学习多目标优化模型,以最大化全局模型准确率、最小化全局模型准确率分布方差和通信成本为目标,提出了基于快速贪婪初始化的改进NSGA-Ⅲ算法,提高了NSGA-Ⅲ对于联邦学习多目标优化的效率。实验结果表明,相比经典多目标进化算法,提出的优化方法能得到较优Pareto解;与标准的联邦模型相比,优化的模型能在保证全局模型准确率的情况下,有效降低通信成本和全局模型准确率分布方差。 展开更多
关键词 联邦学习 多目标均衡 nsga-算法 多目标进化 参数优化
下载PDF
基于改进NSGA-Ⅲ算法的多目标柔性作业车间调度 被引量:4
10
作者 欧阳洪才 张桐瑞 吴定会 《控制工程》 CSCD 北大核心 2023年第1期105-112,共8页
针对多目标柔性作业车间调度问题求解效率低的难题,提出了一种改进NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ)调度优化算法。首先,建立了考虑直接能耗和间接能耗的多目标柔性作业车间调度模型;然后,结合两段式编码设计了一... 针对多目标柔性作业车间调度问题求解效率低的难题,提出了一种改进NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ)调度优化算法。首先,建立了考虑直接能耗和间接能耗的多目标柔性作业车间调度模型;然后,结合两段式编码设计了一种混合分配策略,应用于种群的初始化,并通过进化算子确定子代种群的生成;最后,基于参考点的小生境选择策略,利用双层正交边界交叉方法生成一组预定的参考点,并根据种群熵值变化率设计自适应淘汰策略用于非支配精英存储策略。通过对11个作业车间调度问题算例进行改造,验证了改进算法求解多目标柔性作业车间调度问题具有较高的求解质量和求解效率。 展开更多
关键词 柔性作业车间 多目标优化 nsga- 能耗
下载PDF
Satellite constellation design with genetic algorithms based on system performance
11
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:3
12
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (nsga-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
基于NSGA-Ⅲ算法的多无人机协同航迹规划 被引量:8
13
作者 袁梦顺 陈谋 吴庆宪 《吉林大学学报(信息科学版)》 CAS 2021年第3期295-302,共8页
当多架无人机协同作战时,需要进行协同航迹规划,以提升任务成功率。将协同航迹规划中的约束转换为多个目标后,对NSGA(Non-Dominated Sorting Genetic Algorithm)-Ⅲ算法与势场蚁群算法进行融合设计。算法首先对地图进行势场构建,使距离... 当多架无人机协同作战时,需要进行协同航迹规划,以提升任务成功率。将协同航迹规划中的约束转换为多个目标后,对NSGA(Non-Dominated Sorting Genetic Algorithm)-Ⅲ算法与势场蚁群算法进行融合设计。算法首先对地图进行势场构建,使距离障碍物较近的节点不易被选择,并且引导搜索方向。然后对航迹代价、空间协同约束和时间协同约束进行数学建模,转换为数值指标,并设置为NSGA-Ⅲ算法的多个目标。对NSGA-Ⅲ算法设计了临界层选择方法和进化算法等。最后在二维和三维栅格地图中,改进NSGA-Ⅲ算法利用各种群为各无人机搜索出期望的航迹。仿真实验表明,规划所得到的各无人机航迹安全且代价较小。 展开更多
关键词 多无人机 协同航迹规划 nsga-算法 势场蚁群算法
下载PDF
基于改进NSGA-Ⅲ算法的微电网多目标优化运行 被引量:4
14
作者 范子霄 李升 郁嘉炜 《电气自动化》 2021年第6期39-41,45,共4页
为了优化微电网的运行,以综合运营成本最低、储能充放电量最低和环境效益最优为目标,计及网内功率平衡、微源出力等约束,建立了微网优化运行的数学模型。引入一种改进的三代非支配排序遗传算法,通过在标准算法中引入量子局部搜索,进一... 为了优化微电网的运行,以综合运营成本最低、储能充放电量最低和环境效益最优为目标,计及网内功率平衡、微源出力等约束,建立了微网优化运行的数学模型。引入一种改进的三代非支配排序遗传算法,通过在标准算法中引入量子局部搜索,进一步增强算法的搜索能力,减小算法陷入局部最优的可能性。最后以某地区微电网系统为例,与标准算法求解结果进行对比,验证了所提模型及改进算法的有效性。 展开更多
关键词 微电网 优化调度 多目标优化 nsga-算法 量子搜索
下载PDF
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:2
15
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(nsga-II)
下载PDF
基于改进NSGA-Ⅲ的多SGSW火力分配优化 被引量:3
16
作者 刘庆国 刘新学 +2 位作者 武健 李亚雄 陈豪 《系统工程与电子技术》 EI CSCD 北大核心 2020年第9期1995-2002,共8页
在高维多目标优化中,基于参考点非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)相比于其他多目标进化算法,具备较强的多样性保持能力,但收敛能力存在一定不足。因此引入遗传K均值(genetic K-means,GKM)聚类... 在高维多目标优化中,基于参考点非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)相比于其他多目标进化算法,具备较强的多样性保持能力,但收敛能力存在一定不足。因此引入遗传K均值(genetic K-means,GKM)聚类算法以提高NSGA-Ⅲ的收敛能力,提出基于NSGA-Ⅲ-GKM算法的多天基对地打击武器(space-to-ground strike weapon,SGSW)火力分配优化方法。首先,建立以转移时间最短、落地点速度最大和落地点侵彻角最大为优化目标的SGSW转移轨道优化模型,为后续优化目标的计算打下基础;其次,建立基于NSGA-Ⅲ-GKM算法的火力分配优化模型;最后,仿真结果表明,NSGA-Ⅲ-GKM算法相比于其他代表性多目标进化算法具备较好的多样性保持能力和收敛能力,总体性能较好,该方法能够更有效地解决多SGSW火力分配优化问题。 展开更多
关键词 天基对地打击武器 多目标进化算法 基于参考点非支配排序遗传算法 火力分配 遗传K均值
下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
17
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(nsga-Ⅱ)
下载PDF
An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II
18
作者 Lei Xing Yakui Liu 《Energy Engineering》 EI 2023年第4期1023-1043,共21页
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th... The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II. 展开更多
关键词 Multi-objective optimization wind/photovoltaic/hydrogen power system particle swarm algorithm non-dominated sorting genetic algorithms-II
下载PDF
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
19
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithm operator allocation maintenance station location
下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
20
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部