The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid dro...The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.展开更多
A diagnostics method was presented that uses emission and scattering techniques to simultaneously determine the distributions of soot particle diameter and number density in hydrocarbon flames. Two manta G-504 C camer...A diagnostics method was presented that uses emission and scattering techniques to simultaneously determine the distributions of soot particle diameter and number density in hydrocarbon flames. Two manta G-504 C cameras were utilized for the scattering measurement, with consideration of the attenuation effect in the flames according to corresponding absorption coefficients. Distributions of soot particle diameter and number density were simultaneously determined using the measured scattering coefficients and absorption coefficients under multiple wavelengths already measured with a SOC701 V hyper-spectral imaging device, according to the Mie scattering theory. A flame was produced using an axisymmetric laminar diffusion flame burner with 194 mL/min ethylene and 284 L/min air, and distributions of particle diameter and number density for the flame were presented. Consequently, the distributions of soot volume fraction were calculated using these two parameters as well, which were in good agreement with the results calculated according to the Rayleigh approximation,demonstrating that the proposed diagnostic method is capable of simultaneous determination of the distributions of soot particle diameter and number density.展开更多
It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles...It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.展开更多
The semi-continuous seeded emulsion eopolymerization of vinyl acetate and butyl acrylate was carried out with hydroxyethyl cellulose as a colloid stabilizer. The morphology of the latex particle and the relationship b...The semi-continuous seeded emulsion eopolymerization of vinyl acetate and butyl acrylate was carried out with hydroxyethyl cellulose as a colloid stabilizer. The morphology of the latex particle and the relationship between the reaction time and the average particle diameter and/or the conversion ratio during the polymerization were invstiguted. The experimental results shaw that the morphology of the latex particle possesses the stable sterie construction. In the seeded polymerizution, the average particle diameter of latex decreased while the conversion ratio increased. At the second term of the emulsion copolymerization (the growth stage of particle size), the latex particle average diameter increased with copolymerization continuously, but the instantaneous conversation ratio was not large, so it was very necessaO to properly prolong the time during the holding temperature stage.展开更多
The particle size and shape measured by image analysis is helpful to discuss the human health effects of particulate beside the aerodynamic scale. To explore the size and shape features of particle suspended in the ro...The particle size and shape measured by image analysis is helpful to discuss the human health effects of particulate beside the aerodynamic scale. To explore the size and shape features of particle suspended in the road environment, this research selected 12 bus stations as the sampling sites along the main road in the air polluted city Shijiazhuang, China, where a Car-Free Campaign had been carried out. We hung 2 slides covered with a layer of petroleum jelly to collect suspending particles for 24 hours at each sampling site, and measured the particles size and shape parameters with the Particle Size Analyzer of CIS-50. The results show that the average particle size by the equivalent area diameter is around 10 μm, the size distributions are multi-modal with wide span, demonstrating that coarse dust suspended on road derived from several particle sources. Most of the particles suspended are square or square-like in shape with rugged border. Compared the samples of ordinary days and of the Car-Free day, the size and shape features vary little, inferring the ineffective results for the particle control of the Campaign. There is certain relationship between particle size and shape. The number percent of PMs-E (particulate matter with equivalent area diameter beneath 5 pro) is positively correlative with the number percent of particles of square or square-like shape, and negatively correlative with that of round or round-like shape. This relationship pattern in the road environment is contrary to the situations in the upper atmosphere, inferring different transportation and source emission mechanism influences.展开更多
The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and...The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and number concentration and median particle diameter of PM10 and PM2.5 as well as their correlation with relative humidity were analyzed. The results showed that the three indicators of PM10 and PM2.5 except for the mass concentration correlated with relative humidity,of which the correlation between the mass median particle diameter and relative humidity was the best. The correlation coefficient R^2 between the mass median particle diameter of PM10( PM2.5) and relative humidity was up to 0. 943( 0. 832). Therefore,relative humidity and pressure are key impact factors of indicators of particles.展开更多
Characteristics of spherical particles on copper powder and changing sizes were studied in a ball mill under various experimental conditions,such as different ball diameters,high rotation speeds,and milling times,usin...Characteristics of spherical particles on copper powder and changing sizes were studied in a ball mill under various experimental conditions,such as different ball diameters,high rotation speeds,and milling times,using a discrete element method(DEM)simulation.This experiment has investigated the characteristics of spherical particle morphology evolution involved in the mechanical alloying of copper powder.The morphological evolution of the copper particle was analyzed using scanning electron microscopy(SEM).A spherical copper particle was shown with a roundness value using imageJ software.The DEM was used to simulate the ball motion in a planetary ball mill,and the impact energy and shear energy generated during the collision were analyzed to estimate the contact number between the ball and the ball wall.Therefore,as the size of the ball decreased,the number of ball-to-ball and ball-to-wall contacts increased accordingly,and the spherical shape of the copper powder changed.展开更多
Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)depositi...Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)deposition in human airways.Study aimed to demonstrate stable ISPM physicochemical parameters of 10 incense products inside the customized whole body inhalation exposure chamber(without animal)connected to smoke generation unit via aerosol mixing device.IS analyzed for size segregated PM emission,ISPM in vitro aerodynamics(MMAD and GSD determination),fine and ultrafine particle's SEM,SEM-EDX and PAH analysis.Using real life exposure scenario by utilizing MMAD,GSD and PM concentration after Tier 1 exposure assessment as key input parameters,ISPM dosimetry in infant(3 months)and adult(21 years male and female)human airways was calculated using multiple-path particle dosimetry(MPPD 3.04)modeling.Mass median aerodynamic diameter(MMAD)and geo-metric standard deviation(GSD)ranged between 0.55 and 2.10μm and 1.22 to 1.77(polydisperse)respectively.PM1.0 and PM0.1 showed multiple morphology and presence of heavy and trace elements.PAH like acenaphthylene,anthracene,fluorene,naphthalene and phenanthrene were detected(0.84-143.17μg/g).MPPD results showed higher ISPM deposition in pulmonary region and lowest in trachea bronchial region.ISPM deposition in tissue was higher in lower,peripheral lung as compared to upper and central lung tissue.Whole body inhalation exposure system showed stable IS atmosphere(physi-cochemical parameters)indicating the device suitability in future inhalation studies.MPPD ISPM deposition fraction and clearance data showed deep lung penetrating and retention behavior with higher risk in infant followed by female and then male.These modeled particle deposition and clearance data may be useful in risk assessment analysis of IS.展开更多
Snow interacting with a high-speed train can cause the formation of ice in the train bogie region and affect its safety.In this study,a wind-snow multiphase numerical approach is introduced for high-speed train bogies...Snow interacting with a high-speed train can cause the formation of ice in the train bogie region and affect its safety.In this study,a wind-snow multiphase numerical approach is introduced for high-speed train bogies on the basis of the Euler-Lagrange discrete phase model.A particle-wall impact criterion is implemented to account for the presence of snow particles on the surface.Subsequently,numerical simulations are conducted,considering various snow particle diameter distributions and densities.The research results indicate that when the particle diameter is relatively small,the distribution of snow particles in the bogie cavity is relatively uniform.However,as the particle diameter increases,the snow particles in the bogie cavity are mainly located in the rear wheel pairs of the bogie.When the more realistic Rosin-Rammler diameter distribution is applied to snow particles,the positions of snow particles with different diameters vary in the bogie cavity.More precisely,smaller diameter particles are primarily located in the front and upper parts of the bogie cavity,while larger diameter snow particles accumulate at the rear and in the lower parts of the bogie cavity.展开更多
文摘The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0601900)the National Natural Science Foundation of China(Grant Nos.51827808,51821004,and 51406095)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018ZD03 and2017ZZD005)Science and Technology Partnership Program,Ministry of Science and Technology of China(Grant No.KY201401003)
文摘A diagnostics method was presented that uses emission and scattering techniques to simultaneously determine the distributions of soot particle diameter and number density in hydrocarbon flames. Two manta G-504 C cameras were utilized for the scattering measurement, with consideration of the attenuation effect in the flames according to corresponding absorption coefficients. Distributions of soot particle diameter and number density were simultaneously determined using the measured scattering coefficients and absorption coefficients under multiple wavelengths already measured with a SOC701 V hyper-spectral imaging device, according to the Mie scattering theory. A flame was produced using an axisymmetric laminar diffusion flame burner with 194 mL/min ethylene and 284 L/min air, and distributions of particle diameter and number density for the flame were presented. Consequently, the distributions of soot volume fraction were calculated using these two parameters as well, which were in good agreement with the results calculated according to the Rayleigh approximation,demonstrating that the proposed diagnostic method is capable of simultaneous determination of the distributions of soot particle diameter and number density.
基金Supported by National Natural Science Foundation of China(Grant No.51705445)Hebei Provincial Natural Science Foundation of China,(Grant No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201714)
文摘It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.
文摘The semi-continuous seeded emulsion eopolymerization of vinyl acetate and butyl acrylate was carried out with hydroxyethyl cellulose as a colloid stabilizer. The morphology of the latex particle and the relationship between the reaction time and the average particle diameter and/or the conversion ratio during the polymerization were invstiguted. The experimental results shaw that the morphology of the latex particle possesses the stable sterie construction. In the seeded polymerizution, the average particle diameter of latex decreased while the conversion ratio increased. At the second term of the emulsion copolymerization (the growth stage of particle size), the latex particle average diameter increased with copolymerization continuously, but the instantaneous conversation ratio was not large, so it was very necessaO to properly prolong the time during the holding temperature stage.
基金This research was supported by the Nature Science Foundation of Hebei Province (D2005000176) and the Construction Projects of Key Disciplines in University of Hebei Province, China. The authors would like to thank the support of the Environment Monitoring Center of Shijiazhuang city, China.
文摘The particle size and shape measured by image analysis is helpful to discuss the human health effects of particulate beside the aerodynamic scale. To explore the size and shape features of particle suspended in the road environment, this research selected 12 bus stations as the sampling sites along the main road in the air polluted city Shijiazhuang, China, where a Car-Free Campaign had been carried out. We hung 2 slides covered with a layer of petroleum jelly to collect suspending particles for 24 hours at each sampling site, and measured the particles size and shape parameters with the Particle Size Analyzer of CIS-50. The results show that the average particle size by the equivalent area diameter is around 10 μm, the size distributions are multi-modal with wide span, demonstrating that coarse dust suspended on road derived from several particle sources. Most of the particles suspended are square or square-like in shape with rugged border. Compared the samples of ordinary days and of the Car-Free day, the size and shape features vary little, inferring the ineffective results for the particle control of the Campaign. There is certain relationship between particle size and shape. The number percent of PMs-E (particulate matter with equivalent area diameter beneath 5 pro) is positively correlative with the number percent of particles of square or square-like shape, and negatively correlative with that of round or round-like shape. This relationship pattern in the road environment is contrary to the situations in the upper atmosphere, inferring different transportation and source emission mechanism influences.
文摘The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and number concentration and median particle diameter of PM10 and PM2.5 as well as their correlation with relative humidity were analyzed. The results showed that the three indicators of PM10 and PM2.5 except for the mass concentration correlated with relative humidity,of which the correlation between the mass median particle diameter and relative humidity was the best. The correlation coefficient R^2 between the mass median particle diameter of PM10( PM2.5) and relative humidity was up to 0. 943( 0. 832). Therefore,relative humidity and pressure are key impact factors of indicators of particles.
基金convergence research financial program for instructors,graduate students and professors in 2023.
文摘Characteristics of spherical particles on copper powder and changing sizes were studied in a ball mill under various experimental conditions,such as different ball diameters,high rotation speeds,and milling times,using a discrete element method(DEM)simulation.This experiment has investigated the characteristics of spherical particle morphology evolution involved in the mechanical alloying of copper powder.The morphological evolution of the copper particle was analyzed using scanning electron microscopy(SEM).A spherical copper particle was shown with a roundness value using imageJ software.The DEM was used to simulate the ball motion in a planetary ball mill,and the impact energy and shear energy generated during the collision were analyzed to estimate the contact number between the ball and the ball wall.Therefore,as the size of the ball decreased,the number of ball-to-ball and ball-to-wall contacts increased accordingly,and the spherical shape of the copper powder changed.
文摘Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)deposition in human airways.Study aimed to demonstrate stable ISPM physicochemical parameters of 10 incense products inside the customized whole body inhalation exposure chamber(without animal)connected to smoke generation unit via aerosol mixing device.IS analyzed for size segregated PM emission,ISPM in vitro aerodynamics(MMAD and GSD determination),fine and ultrafine particle's SEM,SEM-EDX and PAH analysis.Using real life exposure scenario by utilizing MMAD,GSD and PM concentration after Tier 1 exposure assessment as key input parameters,ISPM dosimetry in infant(3 months)and adult(21 years male and female)human airways was calculated using multiple-path particle dosimetry(MPPD 3.04)modeling.Mass median aerodynamic diameter(MMAD)and geo-metric standard deviation(GSD)ranged between 0.55 and 2.10μm and 1.22 to 1.77(polydisperse)respectively.PM1.0 and PM0.1 showed multiple morphology and presence of heavy and trace elements.PAH like acenaphthylene,anthracene,fluorene,naphthalene and phenanthrene were detected(0.84-143.17μg/g).MPPD results showed higher ISPM deposition in pulmonary region and lowest in trachea bronchial region.ISPM deposition in tissue was higher in lower,peripheral lung as compared to upper and central lung tissue.Whole body inhalation exposure system showed stable IS atmosphere(physi-cochemical parameters)indicating the device suitability in future inhalation studies.MPPD ISPM deposition fraction and clearance data showed deep lung penetrating and retention behavior with higher risk in infant followed by female and then male.These modeled particle deposition and clearance data may be useful in risk assessment analysis of IS.
基金Natural Science Foundation of Shandong Province(Grant No.ZR2022ME180),the National Natural Science Foundation of China(Grant No.51705267).
文摘Snow interacting with a high-speed train can cause the formation of ice in the train bogie region and affect its safety.In this study,a wind-snow multiphase numerical approach is introduced for high-speed train bogies on the basis of the Euler-Lagrange discrete phase model.A particle-wall impact criterion is implemented to account for the presence of snow particles on the surface.Subsequently,numerical simulations are conducted,considering various snow particle diameter distributions and densities.The research results indicate that when the particle diameter is relatively small,the distribution of snow particles in the bogie cavity is relatively uniform.However,as the particle diameter increases,the snow particles in the bogie cavity are mainly located in the rear wheel pairs of the bogie.When the more realistic Rosin-Rammler diameter distribution is applied to snow particles,the positions of snow particles with different diameters vary in the bogie cavity.More precisely,smaller diameter particles are primarily located in the front and upper parts of the bogie cavity,while larger diameter snow particles accumulate at the rear and in the lower parts of the bogie cavity.