期刊文献+
共找到3,497篇文章
< 1 2 175 >
每页显示 20 50 100
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
1
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 pileS Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution model tests
下载PDF
Behavior of raft on settlement reducing piles:Experimental model study 被引量:4
2
作者 Basuony El-Garhy Ahmed Abdel Galil +1 位作者 Abdel-Fattah Youssef Mohamed Abo Raia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第5期389-399,共11页
An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of... An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of single pile,unpiled rafts and rafts on 1,4,9,or 16 piles.The model piles beneath the rafts are closed ended displacement piles installed by driving.Three lengths of piles are used in the experiments to represent slenderness ratio,L/D,of 20,30 and 50,respectively.The dimensions of the model rafts are 30 cm×30 cm with different thickness of 0.5 cm,1.0 cm or 1.5 cm.The raft-soil stiffness ratios of the model rafts ranging from 0.39 to 10.56 cover flexible to very stiff rafts.The improvement in the ultimate bearing capacity is represented by the load improvement ratio,LIR,and the reductions in average settlement and differential settlement are represented by the settlement ratio,SR,and the differential settlement ratio,DSR,respectively.The effects of the number of settlement reducing piles,raft relative stiffness,and the slenderness ratio of piles on the load improvement ratio,settlement ratio and differential settlement ratio are presented and discussed.The results of the tests show the effectiveness of using piles as settlement reduction measure with the rafts.As the number of settlement reducing piles increases,the load improvement ratio increases and the differential settlement ratio decreases. 展开更多
关键词 RAFT Settlement reducing piles piled raft model tests Sand soil
下载PDF
Model tests on XCC-piled embankment under dynamic train load of high-speed railways 被引量:6
3
作者 Niu Tingting Liu Hanlong +1 位作者 Ding Xuanming Zheng Changjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期581-594,共14页
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under... Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder. 展开更多
关键词 piled embankment model test dynamic train load of high-speed railways XCC-pile M-shaped wave
下载PDF
A new approach for time effect analysis of settlement for single pile based on virtual soil-pile model 被引量:9
4
作者 吴文兵 王奎华 +1 位作者 张智卿 CHIN Jian Leo 《Journal of Central South University》 SCIE EI CAS 2012年第9期2656-2662,共7页
A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil laye... A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil layers under the pile end are assumed to be virtual soil-pile whose cross-section area is the same as that of the pile shaft. Then, by means of Laplace transform and impedance function transfer method to solve the static equilibrium equation of pile, the analytical solution of the displacement impedance fimction at the pile head is derived. Furthermore, the analytical solution of the settlement at the head of single pile is theoretically derived by virtue of convolution theorem. Based on these solutions, the influences of parameters of soil-pile system on the settlement behavior for single pile are analyzed. Also, comparison of the load-settlement response for two well-instrumented field tests in multilayered soils is given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to calculate the settlement of single pile for the preliminary design of pile foundation. 展开更多
关键词 SETTLEMENT time effect single pile virtual soil-pile model layered soil VISCOELASTICITY distributed Voigt model
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:6
5
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE pile DRAWDOWN FAILURE REINFORCEMENT Centrifuge model test
下载PDF
Vertical bearing capacity of pile based on load transfer model 被引量:7
6
作者 赵明华 杨明辉 邹新军 《Journal of Central South University of Technology》 EI 2005年第4期488-493,共6页
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s... The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice. 展开更多
关键词 pile foundation load transfer model top settlement vertical bearing capacity
下载PDF
Model test on vertical bearing capacity of X-section concrete pile raft foundation in silica sand 被引量:3
7
作者 XU Lai PENG Yu +1 位作者 DING Xuan-ming LIU Jia-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1861-1869,共9页
To reveal the bearing capacity of the X-section concrete piles pile raft foundation in silica sand,a series of vertical load tests are carried out.The X-section concrete piles are compared with circular section pile w... To reveal the bearing capacity of the X-section concrete piles pile raft foundation in silica sand,a series of vertical load tests are carried out.The X-section concrete piles are compared with circular section pile with the same section area.The load−settlement curves,axial force and skin friction,strain on concave and convex edge of the pile,pile-sand stress ratio,distributions of side and tip resistance are presented.The results show that bearing capacity of the X section concrete pile raft foundation is much larger than that of the circular pile raft foundation.Besides,compared with the circular pile,the peak axial force of X-section piles under raft is deeper and smaller while the neutral point of X-section concrete pile is deeper.Moreover,the strain on the concave edge is much larger than that on the convex edge of the pile,and the convex edge has more potential in bearing capacity as the vertical load increases.The X-section pile has higher pile-sand stress ratios and load-sharing between side resistance and tip resistance.Above all,the X-section concrete pile can significantly increase the bearing capacity of pile-raft foundations in silica sand. 展开更多
关键词 X-section pile pile raft foundation model test neutral point pile-soil stress ratio
下载PDF
Centrifuge modeling of dynamic behavior of pile-reinforced slopes during earthquakes 被引量:4
8
作者 于玉贞 邓丽军 +1 位作者 孙逊 吕禾 《Journal of Central South University》 SCIE EI CAS 2010年第5期1070-1078,共9页
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre... A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period. 展开更多
关键词 EARTHQUAKE SLOPE stabilizing pile dynamic behavior centrifuge modeling earth pressure ACCELERATION bending moment
下载PDF
Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil 被引量:2
9
作者 Chandra Shekhar Goit Masato Saitoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期143-154,共12页
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat... Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems. 展开更多
关键词 inclined single piles harmonic loads horizontal impedance functions local nonlinearity finite element model
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling 被引量:1
10
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled RAFT pile SPACING soft clay dynamic CENTRIFUGE model test seismic response SUBSIDENCE load sharing bending moment
下载PDF
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
11
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group piled raft pileesoileraft interaction Physical modeling Cast-in-place concrete piles
下载PDF
Benefit allocation model of distributed photovoltaic power generation vehicle shed and energy storage charging pile based on integrated weighting-Shapley method 被引量:8
12
作者 Qingkun Tan Peng Wu +3 位作者 Wei Tang Chang Cao Chengjie Wang Yu Zhang 《Global Energy Interconnection》 2020年第4期375-384,共10页
In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley ... In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley integrated-empowerment benefit-distribution method.First,through literature survey and expert interview to identify the risk factors at various stages of the project,a dynamic risk-factor indicator system is developed.Second,to obtain a more meaningful risk-calculation result,the subjective and objective weights are combined,the weights of the risk factors at each stage are determined by the expert scoring method and entropy weight method,and the interest distribution model based on multi-dimensional risk factors is established.Finally,an example is used to verify the rationality of the method for the benefit distribution of the charging-pile project.The results of the example indicate that the limitations of the Shapley method can be reasonably avoided,and the applicability of the model for the benefit distribution of the charging-pile project is verified. 展开更多
关键词 Charging pile Benefit distribution Risk factor Integrated weighting method Shapley model
下载PDF
A Method for the Damage Detection of Pile Foundation in High-Pile Wharf Based on A Curvature Mode Deletion Model 被引量:2
13
作者 WANG Qi-ming ZHU Rui-hu +3 位作者 ZHENG Jin-hai WANG Ning LUO Meng-yan CHE Yu-fei 《China Ocean Engineering》 SCIE EI CSCD 2020年第6期871-880,共10页
As the top of the pile foundation in high-pile wharf is connected to the superstructure and most of the pile bodies are located below the water surface, traditional damage detection methods are greatly limited in thei... As the top of the pile foundation in high-pile wharf is connected to the superstructure and most of the pile bodies are located below the water surface, traditional damage detection methods are greatly limited in their application to pile foundation in service. In the present study, a new method for pile foundation damage detection is developed based on the curve shape of the curvature mode difference(CMD) before and after damage. In the method, the influence at each node on the overall CMD curve shape is analyzed through a data deletion model, statistical characteristic indexes are established to reflect the difference between damaged and undamaged units, and structural damage is accurately detected. The effectiveness and robustness of the method are verified by a finite element model(FEM) of high-pile wharf under different damage conditions and different intensities of Gaussian white noise. The applicability of the method is then experimentally validated by a physical model of high-pile wharf. Both the FEM and the experimental results show that the method is capable of detecting pile foundation damage in noisy curvature mode and has strong application potential. 展开更多
关键词 high-pile wharf pile foundation curvature mode data deletion model damage detection
下载PDF
Optimization Mathematical Model of Pile Forces for Offshore Piled Breasting Dolphins 被引量:1
14
作者 周锡礽 王乐芹 +1 位作者 王晖 朱福明 《海洋工程:英文版》 EI 2004年第4期567-575,共9页
An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least ... An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least number of piles is achieved by the multiplier penalty function method. Several engineering cases have been calculated and compared with the result of the conventional design method. It is shown that the number of piles can be reduced at least by 10%~20% and the piles' bearing state is improved greatly. 展开更多
关键词 piled breasting dolphin mathematical model multiplier penalty function method optimization design
下载PDF
Study on soil-pile-structure-TMD interaction system by shaking table model test 被引量:3
15
作者 楼梦麟 王文剑 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期127-137,共11页
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very... The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device. 展开更多
关键词 soil-pile-structure interaction TMD’s performance structural control shaking table model test
下载PDF
Model Tests of Pile Defect Detection
16
作者 Li Guocheng Wang Jingtao School of Civil Engineering , Huazhong University of Science and Technology , Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第4期321-324,共4页
The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defec... The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %. 展开更多
关键词 model tests pile defect detection stress wave responses.
下载PDF
Numerical modeling of centrifuge cyclic lateral pile load experiments 被引量:8
17
作者 Nikos Gerolymos Sandra Escoffier +1 位作者 George Gazetas Jacques Garnier 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期61-76,共16页
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir... To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented. 展开更多
关键词 centrifuge test Winkler model p-y curves cyclic loading pile-soil separation/gapping nonlinear response experimental validation
下载PDF
Study of Physical Modelling for Piles
18
作者 Roya Momeni Vahid Rostami Javad Khazaei 《Open Journal of Geology》 2017年第8期1160-1175,共16页
Physical modeling due to its simulation ability of real conditions has been developed as a proper method to study engineering issues. In this paper after the introduction of usual physical modeling systems in geotechn... Physical modeling due to its simulation ability of real conditions has been developed as a proper method to study engineering issues. In this paper after the introduction of usual physical modeling systems in geotechnical engineering, we focused on a low known device of physical modeling in geotechnical practice, especially applicable in deep foundations. It is named Frustum Confining Vessel (FCV) that is one of the calibration chamber forms. It can apply high stress level by a relatively linear stress distribution. Thus, it can simulate actual states for piles in laboratory controlled conditions. The FCV test results can be used for real project by multiply scale factors. Scale factors can be explained by dimensional and similar analyses in every model and apparatus. In this study the relatively largest size of FCV among others in the world, which called FCV-AUT, was used to study physical purposes. Several various model piles (deep foundations) were made by 4 mm thick steel plate with height of 750 mm. All model piles tested in Babolsar sand as surrounding soil via FCV, and two full scale piles tested in similar conditions in the field. The experimental results and outcomes indicated the FCV can be used as a suitable device for physical modelling aims. Thus, it can be realized the FCV is more effective than simple and calibration chambers as well as laminar boxes and more economic than centrifuges. 展开更多
关键词 PHYSICAL modeling Frustum CONFINING VESSEL (FCV) model pile Stress Level
下载PDF
Model tests on uplift capacity of double-belled pile influenced by distance between bells
19
作者 SUN Tao CUI Xin-zhuang +5 位作者 SUN Yan-feng HAN Ruo-nan MA Rui-jin YANG Jun-jie WANG Yi-lin CHANG Yu-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1630-1640,共11页
To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space rati... To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space ratios.Finite element modelling is also performed to evaluate the range of soil failure around the piles during pile uplift displacement.Test results show that when bell space ratio is 6 or 8,the uplift capacity reaches the peak value.The upper bell bears more load than the lower one for the piles with bell space ratio less than 6,while the lower bell bears more load than the upper one for the piles with bell space ratio larger than 8. 展开更多
关键词 doubled-belled pile optimized distance uplift bearing capacity model test sand foundation
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
20
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 Random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部