The diffusion process in an external noise-activated non-equilibrium open system–reservoir coupling environment is studied by analytically solving the generalized Langevin equation. The dynamical property of the syst...The diffusion process in an external noise-activated non-equilibrium open system–reservoir coupling environment is studied by analytically solving the generalized Langevin equation. The dynamical property of the system near the barrier top is investigated in detail by numerically calculating the quantities such as mean diffusion path, invariance, barrier passing probability, and so on. It is found that, comparing with the unfavorable effect of internal fluctuations, the external noise activation is sometimes beneficial to the diffusion process. An optimal strength of external activation or correlation time of the internal fluctuation is expected for the diffusing particle to have a maximal probability to escape from the potential well.展开更多
We investigate the dynamics of coherence for a central two-qubit system coupled to an XY spin chain with the Dzyaloshinsky–Moriya interaction. It is found that a sudden transition of coherence exists near the critica...We investigate the dynamics of coherence for a central two-qubit system coupled to an XY spin chain with the Dzyaloshinsky–Moriya interaction. It is found that a sudden transition of coherence exists near the critical point in the weak-coupling case, and an oscillatory envelope appears in the strong-coupling case. In both cases the freezing phenomenon of coherence can be found.展开更多
This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of G...This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of Glasgow.NESS is designed with the main aim to provide an open,flexible,and easy to use simulation environment where users are able not only to perform numerical simulations but also to develop and implement new simulation methods and models.Currently,NESS is organized into two main components:the structure generator and a collection of different numerical solvers;which are linked to supporting components such as an effective mass extractor and materials database.This paper gives a brief overview of each of the components by describing their main capabilities,structure,and theory behind each one of them.Moreover,to illustrate the capabilities of each component,here we have given examples considering various device structures,architectures,materials,etc.at multiple simulation conditions.We expect that NESS will prove to be a great tool for both conventional as well as exploratory device research programs and projects.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to th...We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence,even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.展开更多
Living organisms are high ordered and organized systems accumulating and successively using low entropy energy to support all the processes needed for life. This low level of entropy is a required condition in order t...Living organisms are high ordered and organized systems accumulating and successively using low entropy energy to support all the processes needed for life. This low level of entropy is a required condition in order to make possible the use of endogenous energy for producing, for example, mechanical work. The commonly accepted picture of condensed matter physics, exclusively considering the perturbative coupling between QED Zero-Point-Field also known as “Quantum Vacuum” and the matter system, is unable to thoroughly explain the true origin of this low entropy energy reservoir and its dynamics. Recent researches instead suggested that energy and mass of every particle or body could be actually considered as arising from Quantum Vacuum dynamics which, in turn, can exhibit, under suitable conditions always occurring in the case of living systems, a coherent behavior characterized by a strong phase correlation between matter and an electromagnetic field trapped inside this ensemble. In this paper the preliminary model of Quantum Vacuum already proposed by author is reformulated in terms of QED coherence in condensed matter showing it is able to explain the origin of internal energy stock of living organisms. Within this theoretical framework, an interpretation of some important experimental results about biophotons emission by living systems under the influence of external stimuli is also proposed, suggesting their origin could also arise from Quantum Vacuum dynamics. This model, as shown, opens very interesting and exciting scenarios of further developments in the understanding of the birth and dynamics of life.展开更多
基金the Natural Science Foundation for Youths of Shandong Province,China(Grant No.ZR2011AQ016)the Postdoctoral Innovation Program Foundation of Shandong Province,China(Grant No.201002015)
文摘The diffusion process in an external noise-activated non-equilibrium open system–reservoir coupling environment is studied by analytically solving the generalized Langevin equation. The dynamical property of the system near the barrier top is investigated in detail by numerically calculating the quantities such as mean diffusion path, invariance, barrier passing probability, and so on. It is found that, comparing with the unfavorable effect of internal fluctuations, the external noise activation is sometimes beneficial to the diffusion process. An optimal strength of external activation or correlation time of the internal fluctuation is expected for the diffusing particle to have a maximal probability to escape from the potential well.
基金Supported by the National Natural Science Foundation of China under Grant No 11404246the Shandong Provincial Natural Science Foundation under Grant No ZR2017MF040
文摘We investigate the dynamics of coherence for a central two-qubit system coupled to an XY spin chain with the Dzyaloshinsky–Moriya interaction. It is found that a sudden transition of coherence exists near the critical point in the weak-coupling case, and an oscillatory envelope appears in the strong-coupling case. In both cases the freezing phenomenon of coherence can be found.
基金the European Union Horizon 2020 research and innovation programme under grant agreement No.688101 SUPERAID7 and has received further funding from EPSRC UKRI Innovation Fellowship scheme under grant agreement No.EP/S001131/1(QSEE),No.EP/P009972/1(QUANTDEVMOD)and No.EP/S000259/1(Variability PDK for design based research on FPGA/neuro computing)and from H2020-FETOPEN-2019 scheme under grant agreement No.862539-Electromed-FET OPEN.
文摘This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of Glasgow.NESS is designed with the main aim to provide an open,flexible,and easy to use simulation environment where users are able not only to perform numerical simulations but also to develop and implement new simulation methods and models.Currently,NESS is organized into two main components:the structure generator and a collection of different numerical solvers;which are linked to supporting components such as an effective mass extractor and materials database.This paper gives a brief overview of each of the components by describing their main capabilities,structure,and theory behind each one of them.Moreover,to illustrate the capabilities of each component,here we have given examples considering various device structures,architectures,materials,etc.at multiple simulation conditions.We expect that NESS will prove to be a great tool for both conventional as well as exploratory device research programs and projects.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金supported by the National Natural Science Foundation of China(Grant No.11575071)
文摘We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence,even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.
文摘Living organisms are high ordered and organized systems accumulating and successively using low entropy energy to support all the processes needed for life. This low level of entropy is a required condition in order to make possible the use of endogenous energy for producing, for example, mechanical work. The commonly accepted picture of condensed matter physics, exclusively considering the perturbative coupling between QED Zero-Point-Field also known as “Quantum Vacuum” and the matter system, is unable to thoroughly explain the true origin of this low entropy energy reservoir and its dynamics. Recent researches instead suggested that energy and mass of every particle or body could be actually considered as arising from Quantum Vacuum dynamics which, in turn, can exhibit, under suitable conditions always occurring in the case of living systems, a coherent behavior characterized by a strong phase correlation between matter and an electromagnetic field trapped inside this ensemble. In this paper the preliminary model of Quantum Vacuum already proposed by author is reformulated in terms of QED coherence in condensed matter showing it is able to explain the origin of internal energy stock of living organisms. Within this theoretical framework, an interpretation of some important experimental results about biophotons emission by living systems under the influence of external stimuli is also proposed, suggesting their origin could also arise from Quantum Vacuum dynamics. This model, as shown, opens very interesting and exciting scenarios of further developments in the understanding of the birth and dynamics of life.