期刊文献+
共找到482篇文章
< 1 2 25 >
每页显示 20 50 100
Features of Sandy Debris Flows of the Yanchang Formation in the Ordos Basin and Its Oil and Gas Exploration Significance 被引量:26
1
作者 LI Xiangbo CHEN Qilin +4 位作者 LIU Huaqing WAN Yanrong WEI Lihua LIAO Jianbo LONG Liwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1187-1202,共16页
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S... Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting. 展开更多
关键词 sandy debris flows sedimentary characteristics oil and gas prospecting values Yanchang Formation Ordos Basin
下载PDF
Pressure-Driven Gas Flows in Micro Channels with a Slip Boundary:A Numerical Investigation 被引量:3
2
作者 A.Aissa M.E.A.Slimani +5 位作者 F.Mebarek-Oudina R.Fares A.Zaim L.Kolsi M.Sahnoun M.E.Ganaoui 《Fluid Dynamics & Materials Processing》 EI 2020年第2期147-159,共13页
In this paper,flow of slightly rarefied compressible nitrogen in microchannels has been investigated numerically for low values of Reynolds and Mach numbers.The 2D governing equations were solved using Finite Element ... In this paper,flow of slightly rarefied compressible nitrogen in microchannels has been investigated numerically for low values of Reynolds and Mach numbers.The 2D governing equations were solved using Finite Element Method with first-order slip boundary conditions(Comsol Multiphysics software).A validation was performed by comparing with similar configuration from the literature.It was found that our model can accurately predict the pressure driven flow in microchannels.Several interesting findings are reported about the Relative pressure,longitudinal velocity,Mach number,effect of gas rarefaction and flow rate. 展开更多
关键词 Pressure driven slip flow microchannels gas flow rarefactioneffect
下载PDF
A unified fractional flow framework for predicting the liquid holdup in two-phase pipe flows
3
作者 Fuqiao Bai Yingda Lu Mukul M.Sharma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2614-2624,共11页
Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w... Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows. 展开更多
关键词 Pipe fractional flow Liquid holdup Multiphase pipe flow gas void fraction
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
4
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
CFD modeling of gas−liquid flow phenomenon in lead smelting oxygen-enriched side-blown furnace
5
作者 Zhen-yu ZHU Ping ZHOU +3 位作者 Xing-bang WAN Zhuo CHEN Ling ZHANG Shi-bo KUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2671-2685,共15页
A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec... A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety. 展开更多
关键词 multiphase flow horizontal gas injection backward motion of airflow gas thermal expansion side-blown furnace lead smelting
下载PDF
Permeability evolution and gas flow in wet coal under non-equilibrium state:Considering both water swelling and process-based gas swelling 被引量:1
6
作者 Zhiyong Xiao Gang Wang +3 位作者 Changsheng Wang Yujing Jiang Feng Jiang Chengcheng Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期585-599,共15页
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d... Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed. 展开更多
关键词 gas flow Apparent permeability Water film ADSORPTION non-equilibrium state
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
7
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows 被引量:1
8
作者 Shu-Xia Zhao Zhao Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期348-360,共13页
In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma propertie... In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed. 展开更多
关键词 gas flow inductively coupled plasma compressible flow fluid model
下载PDF
Studies on gas turbulence and particle fluctuation in dense gas-particle flows 被引量:1
9
作者 Lixing Zhou Zhuoxiong Zeng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期251-260,共10页
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carr... Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation. 展开更多
关键词 Particle fluctuation gas turbulence Densegas particle flows
下载PDF
The effect of surface roughness on rarefied gas flows by lattice Boltzmann method 被引量:1
10
作者 刘超峰 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4554-4561,共8页
This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential... This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics. 展开更多
关键词 surface roughness lattice Boltzmann method rarefied gas flows velocity slip
下载PDF
Effect of Ballistic Bouncing of Gas Particles across a Microchannel on Rarefied Gas Flows 被引量:1
11
作者 Nikolai Kislov 《Journal of Applied Mathematics and Physics》 2021年第4期779-808,共30页
This paper proposes a novel computationally efficient method of modeling rarefied gas flow in microchannels based on the newly discovered and mathematically proven Ballistic Principle of the Property Balance in Space ... This paper proposes a novel computationally efficient method of modeling rarefied gas flow in microchannels based on the newly discovered and mathematically proven Ballistic Principle of the Property Balance in Space (BPPBS). The mechanism of influence of the effect of rarefication on the gas flow is specifically investigated. Also, a differential form of the momentum balance equation governing gas flow in the channel between two parallel plates due to the pressure gradient along the channel and its exact implicit solution in the form of an integral equation have been derived. The theory does not use the generalized concept of viscosity based on the variable mean free path (MFP) in the Knudsen layer (KL). Comparing the normalized flow rate as a function of the inverse Knudsen number according to the current theory and the experimental data shows good agreement in the range of the inverse Knudsen number from 0.01 to about 40. The correlation factor is found to be about 0.995. The results show that our approach based on the BPPBS offers substantial and practical advantages in modeling and simulation of rarefied gases. The validity of the widely disseminated claim of the geometry-dependent MFP in the KL was analyzed. 展开更多
关键词 NAVIER-STOKES CFD gas flow Rarefied MICROCHANNEL
下载PDF
Influence of the Channel Design on the Heat Exchange Characteristics of Pulsating Flows in the Supply System of an Engine
12
作者 Leonid Plotnikov Danil Davydov +1 位作者 Dmitry Krasilnikov Vladislav Shurupov 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1309-1322,共14页
Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characte... Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics. 展开更多
关键词 Reciprocating-engine supply system figured valve channel transverse channel profiling pulsating air flow gas dynamics and heat transfer heat transfer pulsation analysis
下载PDF
NUMERICAL CALCULATIONS OF GASEOUS REACTING FLOWS IN A MODEL OF GAS TURBINE COMBUSTORS
13
作者 Yan Chuanjun, Tang Ming, Zhu Huiling and Sun HuixianNorthwestern Polytechnical University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第1期26-34,共9页
This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtain... This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtained by solving the governing differential transport equations. The well-established numerical prediction algorithm SIMPLE, the modified k-ε turbulence model and k-ε-g turbulent diffusion flame model have been adopted in computations. The β function has been selected as probability density function. The effect of combustion process on flow patterns has been investigated. The calculated results have been verified by experiments. They are in remarkably good agreement. 展开更多
关键词 NUMERICAL CALCULATIONS OF gasEOUS REACTING flows IN A MODEL OF gas TURBINE COMBUSTORS gas flow WORK
下载PDF
Quantitative research of the liquid film characteristics in upward vertical gas, oil and water flows
14
作者 Dayang Wang Ningde Jin +1 位作者 Lusheng Zhai Yingyu Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期67-79,共13页
The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are ... The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior. 展开更多
关键词 gas oil and water three-phase flow Liquid film characteristics Liquid film sensor Nonlinear dynamics analysis
下载PDF
Flows of a Rarefied Gas between Coaxial Circular Cylinders with Nonuniform Surface Properties
15
作者 Toshiyuki Doi 《Open Journal of Fluid Dynamics》 2019年第1期22-48,共27页
Flows of a rarefied gas between coaxial circular cylinders with nonuniform surface properties are studied on the basis of kinetic theory. It is assumed that the outer cylinder is a diffuse reflection boundary and the ... Flows of a rarefied gas between coaxial circular cylinders with nonuniform surface properties are studied on the basis of kinetic theory. It is assumed that the outer cylinder is a diffuse reflection boundary and the inner cylinder is a Maxwell-type boundary whose accommodation coefficient varies in the circumferential direction. Three fundamental flows are studied: 1) a flow caused by the rotation of the outer cylinder (Couette flow), 2) a flow induced between the cylinders at rest kept at different temperatures (heat transfer problem), and 3) a flow induced by the circumferential temperature distribution along the cylindrical surfaces (thermal creep flow). The linearized ES-BGK model of the Boltzmann equation is numerically analyzed using a finite difference method. The time-independent behavior of the gas is studied over a wide range of the gas rarefaction degree, the radii ratio, and a parameter characterizing the distribution of the accommodation coefficient. Due to an effect of nonuniform surface properties, a local heat transfer occurs between the gas and the cylindrical surfaces in Couette flow;a local tangential stress arises in the heat transfer problem. However, the total heat transfer between the two cylinders in Couette flow and the total torque acting on the inner cylinder in the heat transfer problem vanish irrespective of the flow parameters. Two nondegenerate reciprocity relations arise due to the effect of nonuniform surface properties. The reciprocity relations among the above-mentioned three flows are numerically confirmed over a wide range of the flow parameters. The force on the inner cylinder, which also arises due to the effect of nonuniform surface properties in Couette flow and the heat transfer problems, is studied. 展开更多
关键词 Rarefied gas flow Micro flow BOLTZMANN Equation gas-Surface Interaction RECIPROCITY RELATIONS
下载PDF
NUMERICAL MODELING OF TURBULENTEVAPORATING GAS-DROPLET TWO-PHASE FLOWS IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN JET ENGINES
16
作者 Zhou Lixing and Zhang JianTsinghua University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期258-265,共8页
The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of pre... The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows pretty good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbo-fan jet engines. 展开更多
关键词 NUMERICAL MODELING OF TURBULENTEVAPORATING gas-DROPLET TWO-PHASE flows IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN JET ENGINES JET gas
下载PDF
Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows
17
作者 Lan JIANG Jie WU +1 位作者 Liming YANG Hao DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期961-980,共20页
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit... A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy. 展开更多
关键词 circular function-based gas kinetic flux solver(C-GKFS) weighted essentially non-oscillatory(WENO)scheme compressible flow finite volume method
下载PDF
PIV MEASUREMENT FOR SWIRLER FLOW FIELD IN GAS TURBINE COMBUSTOR 被引量:9
18
作者 颜应文 李井华 +3 位作者 徐榕 邓远灏 徐华胜 钟世林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期307-317,共11页
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo... The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor. 展开更多
关键词 swirler flow field gas turbine combustor particle image velocimetry primary recirculation zone length
下载PDF
Criterion of gas and solid dual-phase flow atomization crash in molten metal 被引量:1
19
作者 陈刚 杨现 +1 位作者 苏斌 涂川俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期208-216,共9页
A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepa... A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed. 展开更多
关键词 ATOMIZATION metal powder gas and solid dual-phase flow Weber number
下载PDF
Review on the Development of Oil and Gas Flow in Underground Porous Media 被引量:1
20
作者 李军诗 王晓冬 +1 位作者 刘鹏程 侯晓春 《Petroleum Science》 SCIE CAS CSCD 2004年第4期88-94,共7页
Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto... Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper. 展开更多
关键词 Porous flow mechanics of fluids in porous media viscous fluids mechanics of ground water petroleum and natural gas engineering REVIEW PROGRESSION
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部