We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with t...We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.展开更多
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear...Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.展开更多
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced...Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil...Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.展开更多
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro...To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.展开更多
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati...The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.展开更多
Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and...Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties.Therefore,studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil.In this study,molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures,and the influence of pore size and shale oil hydrocarbon composition on the adsorption properties in the pores was analyzed.The results show that different molecules have different adsorption capacities in shale oil pores,with lighter hydrocarbon components(C6H14)exhibiting stronger adsorption abilities.For the same adsorbed molecule,the adsorption amount linearly increases with the increase in pore diameter,but larger pores contribute more to shale oil adsorption.In shale pores,the thickness of the adsorption layer formed by shale oil molecules ranges from 0.4 to 0.5 nm,which is similar to the width of alkane molecules.Shale oil in the adsorbed state that is difficult to be exploited is mainly concentrated in the first adsorption layer.Among them,the volume fraction of adsorbed shale oil in 6 nm shale pores is 40.8%,while the volume fraction of shale oil that is difficult to be exploited is 16.2%.展开更多
Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCa...Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research.展开更多
In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations ...In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.展开更多
To better understand the benzene alkylation with chloroaluminate ionic liquids(ILs) as catalyst, the interfacial properties between the benzene/butene binary reactants and chloroaluminate ILs with varying cation alkyl...To better understand the benzene alkylation with chloroaluminate ionic liquids(ILs) as catalyst, the interfacial properties between the benzene/butene binary reactants and chloroaluminate ILs with varying cation alkyl chain length and different anions were investigated using molecular dynamics(MD) simulations. The results indicate that ILs can obviously improve the interfacial width, solubility and diffusion of reactants compared to H_(2)SO_(4). The longer alkyl chains of cations present a density enrichment at the interface and protrude into the binary reactants phase. Furthermore, the ILs consisting of 1-octyl-3-methylimidazolium cations([Omim]^(+)) and the stronger acidity heptachlorodialuminate anions([Al_(2)Cl_(7)]^(-)) are more beneficial to promote the interfacial width and facilitate the dissolution and diffusion of benzene in both the IL bulk and the interfacial region in comparison to the ones with shorter alkyl chains cations and weaker acidity anions. The information gives us a better guideline for the design of ILs for benzene alkylation.展开更多
The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibriu...The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.展开更多
The molecular dynamics method is used to investigate decomposition of methane hydrate at different temperatures,pressures and concentrations of inhibitor.By analyzing the parameters of system conformation,mean square ...The molecular dynamics method is used to investigate decomposition of methane hydrate at different temperatures,pressures and concentrations of inhibitor.By analyzing the parameters of system conformation,mean square displacement and radial distribution function,the decomposition of hydrate in the presence of alcohol inhibitors ethylene glycol and glycerol is explored.The results show that the hydroxyl groups in alcohol molecules can destroy the cage structure of hydrate,and form hydrogen bonds with nearby water molecules to effectively prevent the reformation of hydrate.Therefore,ethylene glycol and glycerol serve as inhibitors of methane hydrate,furthermore,in terms of inhibition effect,glycerol is better than ethylene glycol by comparing rate of hydrate decomposition.展开更多
The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate...The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate serotonin,SERT is also the target of the abused drug cocaine and,clinically used antidepressants,escitalopram,and paroxetine.To date,few studies have attempted to investigate the unbinding mechanism underlying the orthosteric and allosteric modulation of SERT.In this article,the conserved property of the orthosteric and allosteric sites(S1 and S2)of SERT was revealed by combining the high resolutions of x-ray crystal structures and molecular dynamics(MD)simulations.The residues Tyr95 and Ser438 located within the S1 site,and Arg104 located within the S2 site in SERT illustrate conserved interactions(hydrogen bonds and hydrophobic interactions),as responses to selective serotonin reuptake inhibitors.Van der Waals interactions were keys to designing effective drugs inhibiting SERT and further,electrostatic interactions highlighted escitalopram as a potent antidepressant.We found that cocaine,escitalopram,and paroxetine,whether the S1 site or the S2 site,were more competitive.According to this potential of mean force(PMF)simulations,the new insights reveal the principles of competitive inhibitors that lengths of trails from central SERT to an opening were~18A for serotonin and~22 A for the above-mentioned three drugs.Furthermore,the distance between the natural substrate serotonin and cocaine(or escitalopram)at the allosteric site was~3A.Thus,it can be inferred that the potent antidepressants tended to bind at deeper positions of the S1 or the S2 site of SERT in comparison to the substrate.Continuing exploring the processes of unbinding four ligands against the two target pockets of SERT,this study observed a broad pathway in which serotonin,cocaine,escitalopram(at the S1 site),and paroxetine all were pulled out to an opening between MT1b and MT6a,which may be helpful to understand the dissociation mechanism of antidepressants.展开更多
Background:To elucidate the molecular mechanisms of Curcuma longa(C.longa)in breast cancer treatment.Methods:Phytocompounds of C.longa were obtained from Dr.Duke’s Phytochemical and Ethnobotanical Database.Potential ...Background:To elucidate the molecular mechanisms of Curcuma longa(C.longa)in breast cancer treatment.Methods:Phytocompounds of C.longa were obtained from Dr.Duke’s Phytochemical and Ethnobotanical Database.Potential active targets were retrieved from Bindingdb,SEA and Swiss Target Prediction databases.Breast cancer targets were retrieved from the Therapeutic Target Database.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were done using DAVID and KOBAS3.0 databases respectively.The Cytoscape software was used to construct the phytocompound-target-pathway network.The PyRx and Desmond software were utilized for molecular docking and molecular dynamics simulation respectively.Results:Out of one hundred and fifty-six phytocompounds,fifty-four modulated proteins involved in breast cancer.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated C.longa exerts its therapeutic effect through regulating several key pathways.Molecular docking analysis revealed that most phytocompounds of C.longa had a good affinity with the key targets.Molecular dynamics simulation showed that ethinylestradiol formed stable ligand-protein complexes.Conclusion:The results of this study will enhance our understanding of the potential molecular mechanisms by which C.longa inhibits breast cancer and lay a foundation for future experimental studies.展开更多
Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments....The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments.The simulation results exhibit that the main failure mode of single-crystal Mg film irradiated by a low fluence and long pulse width laser is the ejection of surface atoms,which has laser-induced high stress.However,under high fluence and short pulse width laser irradiation,the main damage mechanism is nucleation fracture caused by stress wave reflection and superposition at the bottom of the film.In addition,Mg[0001] has higher pressure sensitivity and is more prone to ablation than Mg[0001].The evolution equation of crater depth is established using multi-pulse laser ablation simulation and verified by experiments.The results show that,under multiple pulsed laser irradiation,not only does the crater depth increase linearly with the pulse number,but also the quadratic term and constant term of the fitted crater profile curve increase linearly.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51076128)the National High Technology Research and Development Program of China (Grant No. 2009AA05Z107)
文摘We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51775077 and 51909023)。
文摘Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.
基金supported by the National Natural Science Foundation of China (Grant No.11572090)。
文摘Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金supported by the National Natural Science Foundation of China(No.12102256).
文摘Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.
基金supported by the National Natural Science Foundation of China (22275018)the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No.QNKT20-04)。
文摘To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.
文摘The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
文摘Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties.Therefore,studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil.In this study,molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures,and the influence of pore size and shale oil hydrocarbon composition on the adsorption properties in the pores was analyzed.The results show that different molecules have different adsorption capacities in shale oil pores,with lighter hydrocarbon components(C6H14)exhibiting stronger adsorption abilities.For the same adsorbed molecule,the adsorption amount linearly increases with the increase in pore diameter,but larger pores contribute more to shale oil adsorption.In shale pores,the thickness of the adsorption layer formed by shale oil molecules ranges from 0.4 to 0.5 nm,which is similar to the width of alkane molecules.Shale oil in the adsorbed state that is difficult to be exploited is mainly concentrated in the first adsorption layer.Among them,the volume fraction of adsorbed shale oil in 6 nm shale pores is 40.8%,while the volume fraction of shale oil that is difficult to be exploited is 16.2%.
基金supported by the Hubei Province Research Innovation Team Project(T2021022)Scientific Research Projects of Hubei Health Commission(WJ2023M119).
文摘Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research.
基金supported by the National Science Foundation (Division of Materials Research,Program Manager: Dr.Jonathan Madison) under Grant No.2144973financially supported by the startup fund from Drexel University。
文摘In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.
基金The financial support by State Key Laboratory of Heavy Oil Processing, China University of Petroleum。
文摘To better understand the benzene alkylation with chloroaluminate ionic liquids(ILs) as catalyst, the interfacial properties between the benzene/butene binary reactants and chloroaluminate ILs with varying cation alkyl chain length and different anions were investigated using molecular dynamics(MD) simulations. The results indicate that ILs can obviously improve the interfacial width, solubility and diffusion of reactants compared to H_(2)SO_(4). The longer alkyl chains of cations present a density enrichment at the interface and protrude into the binary reactants phase. Furthermore, the ILs consisting of 1-octyl-3-methylimidazolium cations([Omim]^(+)) and the stronger acidity heptachlorodialuminate anions([Al_(2)Cl_(7)]^(-)) are more beneficial to promote the interfacial width and facilitate the dissolution and diffusion of benzene in both the IL bulk and the interfacial region in comparison to the ones with shorter alkyl chains cations and weaker acidity anions. The information gives us a better guideline for the design of ILs for benzene alkylation.
基金supported by the National Science Fundation of China(No.U1937601),and the National Natural Science Foundation of China(Grant No.NSFC51905471).
文摘The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51876032)the Natural Science Foundation of Heilongjiang Province of China(Grant No.ZD2019E002).
文摘The molecular dynamics method is used to investigate decomposition of methane hydrate at different temperatures,pressures and concentrations of inhibitor.By analyzing the parameters of system conformation,mean square displacement and radial distribution function,the decomposition of hydrate in the presence of alcohol inhibitors ethylene glycol and glycerol is explored.The results show that the hydroxyl groups in alcohol molecules can destroy the cage structure of hydrate,and form hydrogen bonds with nearby water molecules to effectively prevent the reformation of hydrate.Therefore,ethylene glycol and glycerol serve as inhibitors of methane hydrate,furthermore,in terms of inhibition effect,glycerol is better than ethylene glycol by comparing rate of hydrate decomposition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904036 and 12175081)Fundamental Research Funds for the Central Universities(Grant No.CCNU22QNOO4)。
文摘The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate serotonin,SERT is also the target of the abused drug cocaine and,clinically used antidepressants,escitalopram,and paroxetine.To date,few studies have attempted to investigate the unbinding mechanism underlying the orthosteric and allosteric modulation of SERT.In this article,the conserved property of the orthosteric and allosteric sites(S1 and S2)of SERT was revealed by combining the high resolutions of x-ray crystal structures and molecular dynamics(MD)simulations.The residues Tyr95 and Ser438 located within the S1 site,and Arg104 located within the S2 site in SERT illustrate conserved interactions(hydrogen bonds and hydrophobic interactions),as responses to selective serotonin reuptake inhibitors.Van der Waals interactions were keys to designing effective drugs inhibiting SERT and further,electrostatic interactions highlighted escitalopram as a potent antidepressant.We found that cocaine,escitalopram,and paroxetine,whether the S1 site or the S2 site,were more competitive.According to this potential of mean force(PMF)simulations,the new insights reveal the principles of competitive inhibitors that lengths of trails from central SERT to an opening were~18A for serotonin and~22 A for the above-mentioned three drugs.Furthermore,the distance between the natural substrate serotonin and cocaine(or escitalopram)at the allosteric site was~3A.Thus,it can be inferred that the potent antidepressants tended to bind at deeper positions of the S1 or the S2 site of SERT in comparison to the substrate.Continuing exploring the processes of unbinding four ligands against the two target pockets of SERT,this study observed a broad pathway in which serotonin,cocaine,escitalopram(at the S1 site),and paroxetine all were pulled out to an opening between MT1b and MT6a,which may be helpful to understand the dissociation mechanism of antidepressants.
文摘Background:To elucidate the molecular mechanisms of Curcuma longa(C.longa)in breast cancer treatment.Methods:Phytocompounds of C.longa were obtained from Dr.Duke’s Phytochemical and Ethnobotanical Database.Potential active targets were retrieved from Bindingdb,SEA and Swiss Target Prediction databases.Breast cancer targets were retrieved from the Therapeutic Target Database.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were done using DAVID and KOBAS3.0 databases respectively.The Cytoscape software was used to construct the phytocompound-target-pathway network.The PyRx and Desmond software were utilized for molecular docking and molecular dynamics simulation respectively.Results:Out of one hundred and fifty-six phytocompounds,fifty-four modulated proteins involved in breast cancer.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated C.longa exerts its therapeutic effect through regulating several key pathways.Molecular docking analysis revealed that most phytocompounds of C.longa had a good affinity with the key targets.Molecular dynamics simulation showed that ethinylestradiol formed stable ligand-protein complexes.Conclusion:The results of this study will enhance our understanding of the potential molecular mechanisms by which C.longa inhibits breast cancer and lay a foundation for future experimental studies.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
文摘The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments.The simulation results exhibit that the main failure mode of single-crystal Mg film irradiated by a low fluence and long pulse width laser is the ejection of surface atoms,which has laser-induced high stress.However,under high fluence and short pulse width laser irradiation,the main damage mechanism is nucleation fracture caused by stress wave reflection and superposition at the bottom of the film.In addition,Mg[0001] has higher pressure sensitivity and is more prone to ablation than Mg[0001].The evolution equation of crater depth is established using multi-pulse laser ablation simulation and verified by experiments.The results show that,under multiple pulsed laser irradiation,not only does the crater depth increase linearly with the pulse number,but also the quadratic term and constant term of the fitted crater profile curve increase linearly.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.