This paper studied a continuous-time model of a production maintenance system in which a manufacturing firm produces a single product selling some and stocking the remaining. The problem of adaptive control of a produ...This paper studied a continuous-time model of a production maintenance system in which a manufacturing firm produces a single product selling some and stocking the remaining. The problem of adaptive control of a production-maintenance system with unknown deterioration has been presented. Using Liapunov technique, the production rate and updating rule of deterioration rate are derived as non-linear functions of inventory level perturbation. Numerical analysis for the system has been presented for a set of parameter values and demand rate.展开更多
This study presents an inventory model for imperfect products with depletion in ordering costs and constant lead time where the price discount in the backorder is permitted.The imperfect products are refused or modifi...This study presents an inventory model for imperfect products with depletion in ordering costs and constant lead time where the price discount in the backorder is permitted.The imperfect products are refused or modified or if they reached to the customer,returned and thus some extra costs are experienced.Lately some of the researchers explicitly present on the significant association between size of lot and quality imperfection.In practical situations,the unsatisfied demands increase the period of lead time and decrease the backorders.To control customers'problems and losses,the supplier provides a price discount in backorders during shortages.Also,an order’s policies may result in including some imperfect products in arrival lots.A discount on price may be offered by the supplier on the out-of-stock products to manage the backorder problems.The study aims to develop a model with imperfect products by permitting the price discount in backorders,and the cost of ordering is considered a decision variable.First,it is assumed that the demand for lead time is followed by a normal distribution and then stops it and assumed that the first two moments of demand for lead time are known.Further,the minimax distribution method is used to solve this model,and a separate algorithm is designed.In this study,two models are discussed with and without a normally distributed rate of demand.The current study verified with the help of some numerical examples over various model parameters.展开更多
This paper considers a model regarding the products with finite life which allows defective items in reproduction and causes a small amount of decay. The market demand is assumed to be level dependent linear type. The...This paper considers a model regarding the products with finite life which allows defective items in reproduction and causes a small amount of decay. The market demand is assumed to be level dependent linear type. The model has also considered the constant production rate which stops after a desired level of inventories and that is the highest level of it. Due to the market demand, defective item and product’s decay, the inventory reduces to the zero level where again the production cycle starts. With a numerical search procedure</span><span style="font-size:12px;font-family:Verdana;">,</span><span style="font-size:12px;font-family:Verdana;"> the proof of the proposed model has been shown. The objective of the proposed model is to find out the total optimum inventory cost, optimum ordering cost and optimum ordering cycle.展开更多
In this paper a time dependent inventory model is developed on the basis of constant production rate and market demands which are exponentially decreasing. It advances in quest of total average optimum cost considerin...In this paper a time dependent inventory model is developed on the basis of constant production rate and market demands which are exponentially decreasing. It advances in quest of total average optimum cost considering those products which have finite shelf-life. The model also considers the small amount of decay. Without having any sort of backlogs, production starts. Reaching at the desired level of inventories, it stops production. After that due to demands along with the deterioration of the items it initiates its depletion and after certain periods the inventory gets zero. The decay of the products is level dependent. The objective of this paper is to find out the optimum inventory cost and optimum time cycle. The model has also been justified with proving the convex property and by giving a numerical example.展开更多
The proposed model considers the products with finite shelf-life which causes a small amount of decay. The market demand is assumed to be level dependent and in a linear form. The model has also considered the constan...The proposed model considers the products with finite shelf-life which causes a small amount of decay. The market demand is assumed to be level dependent and in a linear form. The model has also considered the constant production rate which stops attaining a desired level of inventories and that is the highest level of inventories. Production starts with a buffer stock and without any sort of backlogs. Due to the market demand and product’s decay, the inventory reduces to the level of buffer stock where again the production cycle starts. With a numerical search procedure the proof of the proposed model has been shown. The objective of the model is to obtain the total average optimum inventory cost and optimum ordering cycle.展开更多
Wild mushrooms are recognized as important non-wood forest products in mountainous ecosystems, but their real potential for generating rural economies has not been fully evaluated due to the difficulties in obtaining ...Wild mushrooms are recognized as important non-wood forest products in mountainous ecosystems, but their real potential for generating rural economies has not been fully evaluated due to the difficulties in obtaining reliable productivity data, minimizing their true potential as contributor to rural economies. Mushroom yield models based on large data series from Pinus forest ecosystems in the region of Catalonia(Spain), combined with data from the Spanish National Forest Inventory allow us to estimate the potential mushroom productivity by forest ecosystems. The results of 24,500 tons/yr of mushrooms of which 16,300 tons are classified as edible and 7,900 tons are commonly marketed demonstrate the importance of mushroom productions in Catalonian pine forests, mostly located in mountainous areas where the development of agricultural activities is limited. Economic mushroom value is estimated at 48 million € for the edible mushroom and 32 million € for those corresponding to marketable yields, confirming the potential of this non-wood forest product. These production results and corresponding economic values provide a basis for the incorporation of wild mushrooms as significant non-wood forest products in the development of forest policies in mountainous areas.展开更多
Cutting tool management in manufacturing firms constitutes an essential element in production cost optimization. In order to optimize the cutting tool stock level while concurrently minimizing production costs, a cost...Cutting tool management in manufacturing firms constitutes an essential element in production cost optimization. In order to optimize the cutting tool stock level while concurrently minimizing production costs, a cost optimization model which considers machining parameters is required. This inclusive modeling consideration is a major step towards achieving effectiveness of cutting tool management policy in manufacturing systems with stochastic driven policies for tool demand. This paper presents a cost optimization model for cutting tools whose utilization level is assumed to be optimized in respect of the machining parameters. The proposed cost model in this research incorporated the effects of diversified machining costs ranging from operational through machining, shortage, holding, material and ordering costs. The machining of parts was assumed to be a single cutting operation. Holt-Winters forecasting technique was used to create a stochastic demand dataset for a test scenario in the production of a high-end automotive part. Some numerical examples used to validate the developed model were implemented to illustrate the optimal machining and tool inventory conditions. Furthermore, a sensitivity analysis was carried out to study the influence of varying production parameters such as: machine uptime, demand and cutting parameters on the overall production cost. The results showed that a desired low level of tool storage and holding costs were obtained at the optimal stock levels. The machining uptime had a significant influence on the total cost while tool life and cutting feed rate were both identified as the most influential cutting variables on the total cost. Furthermore, the cutting speed rate had a marginal effect on both costs and tool life. Other cost variables such as shortage and tool costs had significantly low effect on the overall cost. The output trend showed that the feed rate is the most significant cutting parameter in the machining operation, hence influencing the cost the most. Also, machine uptime and demand significantly influenced the total production cost.展开更多
In these studies the isotopic inventories and corresponding activities of important nuclides for different fuel cycles of a CANDU reactor have been compared. The calculations have been performed using the computer cod...In these studies the isotopic inventories and corresponding activities of important nuclides for different fuel cycles of a CANDU reactor have been compared. The calculations have been performed using the computer code WIMSD4. The isotopic inventories and activities have been calculated versus the fuel burn-up for the natural UO2 fuel, 1.2% enriched UO2 fuel and for the 0.45% PuO2-UO2 fuel. It is found that 1.2% enriched uranium fuel has the lowest activity as compared to other two fuel cycles and vice versa for the 0.45% PuO2-UO2 fuel.展开更多
One of the most important responsibilities of a supply chain manager is to decide “how much” (or “many”) of inventory items to order and how to transport them. This paper presents four mixed-integer linear program...One of the most important responsibilities of a supply chain manager is to decide “how much” (or “many”) of inventory items to order and how to transport them. This paper presents four mixed-integer linear programming models to help supply chain managers make these decisions for multiple products subject to multiple constraints when suppliers offer quantity discounts and shippers offer freight discounts. Each model deals with one of the possible combinations of all-units, incremental quantity discounts, all-weight and incremental freight discounts. The models are based on a piecewise linear approximation of the number of orders function. They allow any number of linear constraints and determine if independent or common (fixed) cycle ordering has a lower total cost. Results of computational experiments on an example problem are also presented.展开更多
文摘This paper studied a continuous-time model of a production maintenance system in which a manufacturing firm produces a single product selling some and stocking the remaining. The problem of adaptive control of a production-maintenance system with unknown deterioration has been presented. Using Liapunov technique, the production rate and updating rule of deterioration rate are derived as non-linear functions of inventory level perturbation. Numerical analysis for the system has been presented for a set of parameter values and demand rate.
基金The Graphic Era Hill University Dehradun supported the research of the Sandeep Kumar and Teekam Singh.The corresponding and the third authors thank Prince Sultan University for the financial support.
文摘This study presents an inventory model for imperfect products with depletion in ordering costs and constant lead time where the price discount in the backorder is permitted.The imperfect products are refused or modified or if they reached to the customer,returned and thus some extra costs are experienced.Lately some of the researchers explicitly present on the significant association between size of lot and quality imperfection.In practical situations,the unsatisfied demands increase the period of lead time and decrease the backorders.To control customers'problems and losses,the supplier provides a price discount in backorders during shortages.Also,an order’s policies may result in including some imperfect products in arrival lots.A discount on price may be offered by the supplier on the out-of-stock products to manage the backorder problems.The study aims to develop a model with imperfect products by permitting the price discount in backorders,and the cost of ordering is considered a decision variable.First,it is assumed that the demand for lead time is followed by a normal distribution and then stops it and assumed that the first two moments of demand for lead time are known.Further,the minimax distribution method is used to solve this model,and a separate algorithm is designed.In this study,two models are discussed with and without a normally distributed rate of demand.The current study verified with the help of some numerical examples over various model parameters.
文摘This paper considers a model regarding the products with finite life which allows defective items in reproduction and causes a small amount of decay. The market demand is assumed to be level dependent linear type. The model has also considered the constant production rate which stops after a desired level of inventories and that is the highest level of it. Due to the market demand, defective item and product’s decay, the inventory reduces to the zero level where again the production cycle starts. With a numerical search procedure</span><span style="font-size:12px;font-family:Verdana;">,</span><span style="font-size:12px;font-family:Verdana;"> the proof of the proposed model has been shown. The objective of the proposed model is to find out the total optimum inventory cost, optimum ordering cost and optimum ordering cycle.
文摘In this paper a time dependent inventory model is developed on the basis of constant production rate and market demands which are exponentially decreasing. It advances in quest of total average optimum cost considering those products which have finite shelf-life. The model also considers the small amount of decay. Without having any sort of backlogs, production starts. Reaching at the desired level of inventories, it stops production. After that due to demands along with the deterioration of the items it initiates its depletion and after certain periods the inventory gets zero. The decay of the products is level dependent. The objective of this paper is to find out the optimum inventory cost and optimum time cycle. The model has also been justified with proving the convex property and by giving a numerical example.
文摘The proposed model considers the products with finite shelf-life which causes a small amount of decay. The market demand is assumed to be level dependent and in a linear form. The model has also considered the constant production rate which stops attaining a desired level of inventories and that is the highest level of inventories. Production starts with a buffer stock and without any sort of backlogs. Due to the market demand and product’s decay, the inventory reduces to the level of buffer stock where again the production cycle starts. With a numerical search procedure the proof of the proposed model has been shown. The objective of the model is to obtain the total average optimum inventory cost and optimum ordering cycle.
基金funded by the research project AGL2012-40035-C03-01 (Ministerio de Economía y Competitividad of Spain, Secretaría de Estado de Investigación, Desarrollo e Innovación)the Micosylva+project (Interreg IVB ProgramPO SUDOE SOE3/P2/E533)the Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya
文摘Wild mushrooms are recognized as important non-wood forest products in mountainous ecosystems, but their real potential for generating rural economies has not been fully evaluated due to the difficulties in obtaining reliable productivity data, minimizing their true potential as contributor to rural economies. Mushroom yield models based on large data series from Pinus forest ecosystems in the region of Catalonia(Spain), combined with data from the Spanish National Forest Inventory allow us to estimate the potential mushroom productivity by forest ecosystems. The results of 24,500 tons/yr of mushrooms of which 16,300 tons are classified as edible and 7,900 tons are commonly marketed demonstrate the importance of mushroom productions in Catalonian pine forests, mostly located in mountainous areas where the development of agricultural activities is limited. Economic mushroom value is estimated at 48 million € for the edible mushroom and 32 million € for those corresponding to marketable yields, confirming the potential of this non-wood forest product. These production results and corresponding economic values provide a basis for the incorporation of wild mushrooms as significant non-wood forest products in the development of forest policies in mountainous areas.
文摘Cutting tool management in manufacturing firms constitutes an essential element in production cost optimization. In order to optimize the cutting tool stock level while concurrently minimizing production costs, a cost optimization model which considers machining parameters is required. This inclusive modeling consideration is a major step towards achieving effectiveness of cutting tool management policy in manufacturing systems with stochastic driven policies for tool demand. This paper presents a cost optimization model for cutting tools whose utilization level is assumed to be optimized in respect of the machining parameters. The proposed cost model in this research incorporated the effects of diversified machining costs ranging from operational through machining, shortage, holding, material and ordering costs. The machining of parts was assumed to be a single cutting operation. Holt-Winters forecasting technique was used to create a stochastic demand dataset for a test scenario in the production of a high-end automotive part. Some numerical examples used to validate the developed model were implemented to illustrate the optimal machining and tool inventory conditions. Furthermore, a sensitivity analysis was carried out to study the influence of varying production parameters such as: machine uptime, demand and cutting parameters on the overall production cost. The results showed that a desired low level of tool storage and holding costs were obtained at the optimal stock levels. The machining uptime had a significant influence on the total cost while tool life and cutting feed rate were both identified as the most influential cutting variables on the total cost. Furthermore, the cutting speed rate had a marginal effect on both costs and tool life. Other cost variables such as shortage and tool costs had significantly low effect on the overall cost. The output trend showed that the feed rate is the most significant cutting parameter in the machining operation, hence influencing the cost the most. Also, machine uptime and demand significantly influenced the total production cost.
文摘In these studies the isotopic inventories and corresponding activities of important nuclides for different fuel cycles of a CANDU reactor have been compared. The calculations have been performed using the computer code WIMSD4. The isotopic inventories and activities have been calculated versus the fuel burn-up for the natural UO2 fuel, 1.2% enriched UO2 fuel and for the 0.45% PuO2-UO2 fuel. It is found that 1.2% enriched uranium fuel has the lowest activity as compared to other two fuel cycles and vice versa for the 0.45% PuO2-UO2 fuel.
文摘One of the most important responsibilities of a supply chain manager is to decide “how much” (or “many”) of inventory items to order and how to transport them. This paper presents four mixed-integer linear programming models to help supply chain managers make these decisions for multiple products subject to multiple constraints when suppliers offer quantity discounts and shippers offer freight discounts. Each model deals with one of the possible combinations of all-units, incremental quantity discounts, all-weight and incremental freight discounts. The models are based on a piecewise linear approximation of the number of orders function. They allow any number of linear constraints and determine if independent or common (fixed) cycle ordering has a lower total cost. Results of computational experiments on an example problem are also presented.