The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The aver...The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The average concentrations of the total measured carbonyls during autumn,winter,spring,and summer were 37.7,31.3,39.7,50.5 μg/m 3,respectively,and maximal values for their diurnal variations usually happened at noontime.In contrast to carbonyls,the average concentrations of the total measured BTEX during the four seasons were 27.2,31.9,23.2,19.1 μg/m 3,respectively,andminimal values for their diurnal variations always occurred in the early afternoon.The average concentration for carbonyls increased about 24% from September 2008–August 2009 to September 2009–August 2010,for BTEX,increased about 15%.Integrated life time cancer risks for three carcinogens (benzene,formaldehyde and acetaldehyde) in Beijing exceeded the value of 1E-06,and the hazard quotient (HQ) of non-cancer risk of exposure to formaldehyde exceeded unity.展开更多
Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons,and alkyl nitrates were continuously measure...Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons,and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China. Mixing ratios of carbonyls and hydrocarbons showed large fluctuations during the entire measurement. The average level for total measured volatile organic compounds during the pollution episode from 25 th to 27 th November, 2011 was 91.6 ppb, about 7 times the value for the clean period of 7th–8th, November, 2011. To preliminarily identify toluene sources at this site, the emission ratio of toluene to benzene(T/B) during the pollution episode was determined based on photochemical ages derived from the relationship of alkyl nitrates to their parent alkanes. The calculated T/B was5.8 ppb/ppb, significantly higher than the values of 0.2–1.7 ppb/ppb for vehicular exhaust and other combustion sources, indicating the dominant influence of industrial emissions on ambient toluene. The contributions of industrial sources to ambient carbonyls were then calculated using a multiple linear regression fit model that used toluene and alkyl nitrates as respective tracers for industrial emission and secondary production. During the pollution episode, 18.5%, 69.0%, and 52.9% of measured formaldehyde, acetaldehyde, and acetone were considered to be attributable to industrial emissions. The emission ratios relative to toluene for formaldehyde, acetaldehyde, and acetone were determined to be 0.10, 0.20 and0.40 ppb/ppb, respectively. More research on industrial carbonyl emission characteristics is needed to understand carbonyl sources better.展开更多
In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015...In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015).These results may helpto explain underestimations of carbonyl emissions in currently available emission inventories,and highlight the need for an improved understanding of industrial sources of this class of compounds.展开更多
Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactiv...Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde(9.86 ppbv), acetone(4.41 ppbv), and acetaldehyde(3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone pollution episode, the concentration of carbonyls was found to be higher on pollution days than on the clean days, and relatively higher in the daytime, especially at noon on the pollution days. This was influenced by the intensity of photochemical reactions and precipitation. The “weekend effect” with the concentration of carbonyls was higher on the weekends than on the weekdays was pointed out. Formaldehyde, acetaldehyde and hexaldehyde were the dominant oxidative species during the observation. The carcinogenic and non-carcinogenic risk values of formaldehyde and acetaldehyde were higher on pollution days than on clean days, and these values were higher compared with those of other cities in China and abroad. Long-term exposure to these compounds should therefore be avoided. Diagnostic ratios and correlation analysis together with backward trajectory analysis showed that primary emission and secondary formation accounted 66%-76% and 24%–34% of carbonyls in Chengdu, respectively, with primary emission being the main sources of carbonyls, and carbonyls from the surrounding cities and emission from natural sources also had a significant contribution to the carbonyls in Chengdu.展开更多
Atmospheric mixing ratios of carbonyl sulfide(COS) in Beijing were intensively measured from March 2011 to June 2013. COS mixing ratios exhibited distinct seasonal variation, with a maximum average value of 849 ...Atmospheric mixing ratios of carbonyl sulfide(COS) in Beijing were intensively measured from March 2011 to June 2013. COS mixing ratios exhibited distinct seasonal variation, with a maximum average value of 849 ± 477 pptv in winter and a minimal value of 372 ± 115 pptv in summer. The seasonal variation of COS was mainly ascribed to the combined effects of vegetation uptake and anthropogenic emissions. Two types of significant linear correlations(R2〉 0.66) were found between COS and CO during the periods from May to June and from October to March, with slopes(ΔCOS/ΔCO) of 0.72 and 0.14 pptv/ppbv, respectively. Based on the emission ratios of COS/CO from various sources, the dominant anthropogenic sources of COS in Beijing were found to be vehicle tire wear in summer and coal burning in winter. The total anthropogenic emission of COS in Beijing was roughly estimated as 0.53 ± 0.02 Gg/year based on the local CO emission inventory and the ΔCOS/ΔCO ratios.展开更多
基金supported by the National Natural Science Foundation of China (No. 41075094,40830101, 21177140,20977097)the National Basic Research and the Development Program (973) of China (No. 2010CB732304)+1 种基金the Special Fund for Environmental Research in the Public Interest (No. 201009001)the National Water Special Project (No. 2009ZX07210-009)
文摘The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The average concentrations of the total measured carbonyls during autumn,winter,spring,and summer were 37.7,31.3,39.7,50.5 μg/m 3,respectively,and maximal values for their diurnal variations usually happened at noontime.In contrast to carbonyls,the average concentrations of the total measured BTEX during the four seasons were 27.2,31.9,23.2,19.1 μg/m 3,respectively,andminimal values for their diurnal variations always occurred in the early afternoon.The average concentration for carbonyls increased about 24% from September 2008–August 2009 to September 2009–August 2010,for BTEX,increased about 15%.Integrated life time cancer risks for three carcinogens (benzene,formaldehyde and acetaldehyde) in Beijing exceeded the value of 1E-06,and the hazard quotient (HQ) of non-cancer risk of exposure to formaldehyde exceeded unity.
基金supported by the Project of Complex Air Pollution Monitoring in Zhejiang Province (No. ZZCG2011W-DY-008)the Natural Science Foundation for Outstanding Young Scholars (No. 41125018)
文摘Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons,and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China. Mixing ratios of carbonyls and hydrocarbons showed large fluctuations during the entire measurement. The average level for total measured volatile organic compounds during the pollution episode from 25 th to 27 th November, 2011 was 91.6 ppb, about 7 times the value for the clean period of 7th–8th, November, 2011. To preliminarily identify toluene sources at this site, the emission ratio of toluene to benzene(T/B) during the pollution episode was determined based on photochemical ages derived from the relationship of alkyl nitrates to their parent alkanes. The calculated T/B was5.8 ppb/ppb, significantly higher than the values of 0.2–1.7 ppb/ppb for vehicular exhaust and other combustion sources, indicating the dominant influence of industrial emissions on ambient toluene. The contributions of industrial sources to ambient carbonyls were then calculated using a multiple linear regression fit model that used toluene and alkyl nitrates as respective tracers for industrial emission and secondary production. During the pollution episode, 18.5%, 69.0%, and 52.9% of measured formaldehyde, acetaldehyde, and acetone were considered to be attributable to industrial emissions. The emission ratios relative to toluene for formaldehyde, acetaldehyde, and acetone were determined to be 0.10, 0.20 and0.40 ppb/ppb, respectively. More research on industrial carbonyl emission characteristics is needed to understand carbonyl sources better.
文摘In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015).These results may helpto explain underestimations of carbonyl emissions in currently available emission inventories,and highlight the need for an improved understanding of industrial sources of this class of compounds.
基金financial support from the project Analysis of Multiple Causes of Atmospheric Ozone Pollution in Urban Agglomerations of Chengdu Plain and Development of Management,Prevention,Control System of Sichuan AcademyofEnvironmental Sciences (No.510201201905430)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China,Chinese Research Academy of Environmental Sciences (No.2019YSKY-012,No.2019YSKY-018,No.2019YSKY-013)+1 种基金Peking UniversityChengdu Academy of Environmental Protection and Sciences for their vigorous support during the field observation.
文摘Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde(9.86 ppbv), acetone(4.41 ppbv), and acetaldehyde(3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone pollution episode, the concentration of carbonyls was found to be higher on pollution days than on the clean days, and relatively higher in the daytime, especially at noon on the pollution days. This was influenced by the intensity of photochemical reactions and precipitation. The “weekend effect” with the concentration of carbonyls was higher on the weekends than on the weekdays was pointed out. Formaldehyde, acetaldehyde and hexaldehyde were the dominant oxidative species during the observation. The carcinogenic and non-carcinogenic risk values of formaldehyde and acetaldehyde were higher on pollution days than on clean days, and these values were higher compared with those of other cities in China and abroad. Long-term exposure to these compounds should therefore be avoided. Diagnostic ratios and correlation analysis together with backward trajectory analysis showed that primary emission and secondary formation accounted 66%-76% and 24%–34% of carbonyls in Chengdu, respectively, with primary emission being the main sources of carbonyls, and carbonyls from the surrounding cities and emission from natural sources also had a significant contribution to the carbonyls in Chengdu.
基金financially supported by the National Natural Science Foundation of China (No. 21177140)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010100)the National Basic Research and the Development Program 973 (No. 2010CB732304)
文摘Atmospheric mixing ratios of carbonyl sulfide(COS) in Beijing were intensively measured from March 2011 to June 2013. COS mixing ratios exhibited distinct seasonal variation, with a maximum average value of 849 ± 477 pptv in winter and a minimal value of 372 ± 115 pptv in summer. The seasonal variation of COS was mainly ascribed to the combined effects of vegetation uptake and anthropogenic emissions. Two types of significant linear correlations(R2〉 0.66) were found between COS and CO during the periods from May to June and from October to March, with slopes(ΔCOS/ΔCO) of 0.72 and 0.14 pptv/ppbv, respectively. Based on the emission ratios of COS/CO from various sources, the dominant anthropogenic sources of COS in Beijing were found to be vehicle tire wear in summer and coal burning in winter. The total anthropogenic emission of COS in Beijing was roughly estimated as 0.53 ± 0.02 Gg/year based on the local CO emission inventory and the ΔCOS/ΔCO ratios.