Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensit...Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.展开更多
ABSTRACT The impact of both initial and parameter errors on the spring predictability barrier (SPB) is investigated using the Zebiak Cane model (ZC model). Previous studies have shown that initial errors contribu...ABSTRACT The impact of both initial and parameter errors on the spring predictability barrier (SPB) is investigated using the Zebiak Cane model (ZC model). Previous studies have shown that initial errors contribute more to the SPB than parameter errors in the ZC model. Although parameter errors themselves are less important, there is a possibility that nonlinear interactions can occur between the two types of errors, leading to larger prediction errors compared with those induced by initial errors alone. In this case, the impact of parameter errors cannot be overlooked. In the present paper, the optimal combination of these two types of errors [i.e., conditional nonlinear optimal perturbation (CNOP) errors] is calculated to investigate whether this optimal error combination may cause a more notable SPB phenomenon than that caused by initial errors alone. Using the CNOP approach, the CNOP errors and CNOP-I errors (optimal errors when only initial errors are considered) are calculated and then three aspects of error growth are compared: (1) the tendency of the seasonal error growth; (2) the prediction error of the sea surface temperature anomaly; and (3) the pattern of error growth. All three aspects show that the CNOP errors do not cause a more significant SPB than the CNOP-I errors. Therefore, this result suggests that we could improve the prediction of the E1 Nifio during spring by simply focusing on reducing the initial errors in this model.展开更多
The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based o...The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.展开更多
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho...This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-...The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.展开更多
3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-p...3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.展开更多
An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to...An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.展开更多
In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because ...In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.展开更多
There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude ...There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE, and simulation results demonstrate the efficacy of the presented algorithm.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinem...Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product- of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot' s 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.展开更多
The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and t...The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.展开更多
High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameter...High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.展开更多
In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) ...In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate(BER)and maximize the channel capacity(CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio(SNR) environments.展开更多
Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we...Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output, we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.展开更多
This paper presents the modeling of electrical I-V verification of photovoltaic modules using five-parameter models based on the minimum usage of input data, which are usually provided by manufacturer’s datasheet. Ho...This paper presents the modeling of electrical I-V verification of photovoltaic modules using five-parameter models based on the minimum usage of input data, which are usually provided by manufacturer’s datasheet. However, we vary them with a step of 10-4, the ideality factor between 0.0 and 4 for each iteration in order to choose the value, which gives a minimal relative error of the maximum power point. Moreover, when is known, the other four parameters (i.e., Rs, I0, Iph and Rsh) are known. Finally, the effectiveness of this approach is then validated through comparison of the experimental results data under outdoor weather conditions.展开更多
In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data. In the regularization method a p...In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data. In the regularization method a potential function of model parameters and its corresponding functions are introduced. This method is stable and able to preserve boundaries, and protect resolution. The effect of regularization depends to a great extent on the suitable choice of regularization parameters. The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.展开更多
Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were b...Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were built by both the output error approach and theminimum deviation approach. The minimum deviation approach was introduced as physical constraints tothe output error approach, allowing the output error-minimum deviation coupled approach to bedeveloped. The simulated annealing-simplex shape algorithm was applied to solve the identificationmodels. Numerical simulations were carried out with noisy incomplete measurements to illustrate therobustness of the methods.展开更多
基金sponsored by the Knowl-edge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-QN203)the National Basic Re-search Program of China (No. 2007CB411800)the GYHY200906009 of the China Meteorological Administra-tion
文摘Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.
基金jointly sponsored by the National Nature Scientific Foundation of China (Grant Nos.41230420 and 41006015)the National Basic Research Program of China (Grant No.2012CB417404)the Basic Research Program of Science and Technology Projects of Qingdao (Grant No11-1-4-95-jch)
文摘ABSTRACT The impact of both initial and parameter errors on the spring predictability barrier (SPB) is investigated using the Zebiak Cane model (ZC model). Previous studies have shown that initial errors contribute more to the SPB than parameter errors in the ZC model. Although parameter errors themselves are less important, there is a possibility that nonlinear interactions can occur between the two types of errors, leading to larger prediction errors compared with those induced by initial errors alone. In this case, the impact of parameter errors cannot be overlooked. In the present paper, the optimal combination of these two types of errors [i.e., conditional nonlinear optimal perturbation (CNOP) errors] is calculated to investigate whether this optimal error combination may cause a more notable SPB phenomenon than that caused by initial errors alone. Using the CNOP approach, the CNOP errors and CNOP-I errors (optimal errors when only initial errors are considered) are calculated and then three aspects of error growth are compared: (1) the tendency of the seasonal error growth; (2) the prediction error of the sea surface temperature anomaly; and (3) the pattern of error growth. All three aspects show that the CNOP errors do not cause a more significant SPB than the CNOP-I errors. Therefore, this result suggests that we could improve the prediction of the E1 Nifio during spring by simply focusing on reducing the initial errors in this model.
基金This project is supported by National Advanced ResearchFoundation (No.PD521910) and National Natural ScienceFoundation of Ch
文摘The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.
基金This work was supported by the National Natural Science Foundation of China(62076025).
文摘This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金Supported by the National High Technology Research and Development Program of China (2006AA04Z176)
文摘The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.
基金supported by Program for New Century Excellent Talents in University of Henan Province (GrantNo, 2006HANCET-16)program for The Fund of Henan Polytechnic University Postgraduate’s Innovative Papers (Grant No, 644013)program for Young Talents of Henan Polytechnic University (Grant No,649035)
文摘3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.
文摘An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.
文摘In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.
基金National Natural Science Foundation of China (10572114)
文摘There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE, and simulation results demonstrate the efficacy of the presented algorithm.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金Supported by State Key Lab of Digital Manufacturing Equipment & Technology(Grant No.DMETKF2015013)National Natural Science Foundation of China(Grant No.51305008)
文摘Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product- of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot' s 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.
基金Project supported by the National 973 Program(No.2006CB701301) and the National Natural Science Foundation of China (No.40574005) .
文摘The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305293,51135008)
文摘High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.
基金supported by the National Natural Science Foundation of China(Grant No.61179027)the Qinglan Project of Jiangsu Province of China(Grant No.QL06212006)the University Postgraduate Research and Innovation Project of Jiangsu Province(Grant Nos.KYLX15_0829,KYLX15_0831)
文摘In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate(BER)and maximize the channel capacity(CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio(SNR) environments.
基金Project supported by the National Natural Science Foundation of China (Grant No 10332030) and the State Key Program for Basic Research of China (Grant No 5132103ZZT21B).
文摘Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output, we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.
文摘This paper presents the modeling of electrical I-V verification of photovoltaic modules using five-parameter models based on the minimum usage of input data, which are usually provided by manufacturer’s datasheet. However, we vary them with a step of 10-4, the ideality factor between 0.0 and 4 for each iteration in order to choose the value, which gives a minimal relative error of the maximum power point. Moreover, when is known, the other four parameters (i.e., Rs, I0, Iph and Rsh) are known. Finally, the effectiveness of this approach is then validated through comparison of the experimental results data under outdoor weather conditions.
基金supported in part by the National Natural Science Foundation of China under Grant-in-Aid 40574053the Program for New Century Excellent Talents in University of China (NCET-06-0602)the National 973 Key Basic Research Development Program (No.2007CB209601)
文摘In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data. In the regularization method a potential function of model parameters and its corresponding functions are introduced. This method is stable and able to preserve boundaries, and protect resolution. The effect of regularization depends to a great extent on the suitable choice of regularization parameters. The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.
文摘Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were built by both the output error approach and theminimum deviation approach. The minimum deviation approach was introduced as physical constraints tothe output error approach, allowing the output error-minimum deviation coupled approach to bedeveloped. The simulated annealing-simplex shape algorithm was applied to solve the identificationmodels. Numerical simulations were carried out with noisy incomplete measurements to illustrate therobustness of the methods.