In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentrat...In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentration of 0.1~0.5 mol·L^(-1),the gaseous products were mainly hydrogen,methane,ethane and ethene.The volume fraction of hydrogen did not change much with different concentrations of DEHA.The volume fraction of methane and ethane decreased,but that of ethene increased,with increasing DEHA concentration.The volume fraction of hydrogen,methane and ethane increased with the dose.The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration.展开更多
In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results sho...In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results show that the volume fraction of hydrogen and methane increases with the concentration of DMHA and dose,and the latter does not change markedly at high doses.展开更多
Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference me...Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted. Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated. The results show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases. The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.展开更多
Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiati...Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiation properties of gas in combustion chamber. Edwards exponential wide band model (EBWM) was adopted to calculate the non-gray radiation properties of gas, and the three-point Gauss-Legendre integral formula was used to calculate direct radiation exchange areas. Reflected radiation heat fluxes were obtained by Gauss elimination method, and energy balance equations were solved by main variable correction method. An example was given to validate the developed models, and further investigation of effects of flame distribution on heat transfer was carried on.展开更多
A one-dimensional single-wire chamber was developed to provide high position resolution for powder diffraction experiments with synchrotron radiation. A diffraction test using the sample of SiO2 has been accomplished ...A one-dimensional single-wire chamber was developed to provide high position resolution for powder diffraction experiments with synchrotron radiation. A diffraction test using the sample of SiO2 has been accomplished at 1W2B laboratory of Beijing Synchrotron Radiation Source. The data of the beam test were analyzed and some diffraction angles were obtained. The experimental results were in good agreement with standard data from ICDD powder diffraction file. The precision of diffraction angles was 1% to 4.7%. Most of the relative errors between measured values of diffraction angles and existing data were less than 1%. As for the detector, the best position resolution in the test was 138 p.m (a value) with an X-ray tube. Finally, discussions of the results were given. The major factor that affected the precision of measurement was deviation from the flat structure of the detector. The effect was analyzed and the conclusion was reached that it would be the optimal measurement scheme when the distance between the powder sample and detector was from 400 mm to 600 mm.展开更多
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one ...To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the CEM pream- plification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.展开更多
基金Natural Science Foundation of China (Contract No.20771074)Shanghai Leading Academic Disciplines (Contract No.T0105)
文摘In this paper,gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied.The results show that by 10~1000 kGy irradiation of the solution in DEHA concentration of 0.1~0.5 mol·L^(-1),the gaseous products were mainly hydrogen,methane,ethane and ethene.The volume fraction of hydrogen did not change much with different concentrations of DEHA.The volume fraction of methane and ethane decreased,but that of ethene increased,with increasing DEHA concentration.The volume fraction of hydrogen,methane and ethane increased with the dose.The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration.
基金Supported by Natural Science Foundation of China(Contract No.20771074)Shanghai Leading Academic Disciplines(Contract No.S30109)
文摘In this work,the 0.1-0.5 mol·L-1 N,N-dimethylhydroxylamine(DMHA) were irradiated to 5-25 kGy,and gaseous products of mainly hydrogen,methane,ethane and n-butane were measured by gas chromatography.The results show that the volume fraction of hydrogen and methane increases with the concentration of DMHA and dose,and the latter does not change markedly at high doses.
基金Sponsored by National Basic Research Program of China (2006CB601203)
文摘Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted. Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated. The results show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases. The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.
基金Item Sponsored by National Basic Research Program of China (2006CB601203)
文摘Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiation properties of gas in combustion chamber. Edwards exponential wide band model (EBWM) was adopted to calculate the non-gray radiation properties of gas, and the three-point Gauss-Legendre integral formula was used to calculate direct radiation exchange areas. Reflected radiation heat fluxes were obtained by Gauss elimination method, and energy balance equations were solved by main variable correction method. An example was given to validate the developed models, and further investigation of effects of flame distribution on heat transfer was carried on.
基金National Natural Science Foundation of China (11275224)
文摘A one-dimensional single-wire chamber was developed to provide high position resolution for powder diffraction experiments with synchrotron radiation. A diffraction test using the sample of SiO2 has been accomplished at 1W2B laboratory of Beijing Synchrotron Radiation Source. The data of the beam test were analyzed and some diffraction angles were obtained. The experimental results were in good agreement with standard data from ICDD powder diffraction file. The precision of diffraction angles was 1% to 4.7%. Most of the relative errors between measured values of diffraction angles and existing data were less than 1%. As for the detector, the best position resolution in the test was 138 p.m (a value) with an X-ray tube. Finally, discussions of the results were given. The major factor that affected the precision of measurement was deviation from the flat structure of the detector. The effect was analyzed and the conclusion was reached that it would be the optimal measurement scheme when the distance between the powder sample and detector was from 400 mm to 600 mm.
基金Supported by National Natural Science Foundation of China(11275224)
文摘To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the CEM pream- plification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.