This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibu...This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the ...The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the 40-year(1979–2018)ERA-Interim data from the European Center for Medium-Range Weather Forecasts,this study presented the spatial-temporal distribution and climatic trend of the stability of global offshore wind energy as well as the abrupt phenomenon of wind energy stability in key regions over the past 40 years with the climatic analysis method and Mann-Kendall(M-K)test.The results show the following 5 points.(1)According to the coefficient of variation(C_(v))of the wind power density,there are six permanent stable zones of global offshore wind energy:the southeast and northeast trade wind zones in the Indian,Pacific and Atlantic oceans,the Southern Hemisphere westerly,and a semi-permanent stable zone(North Indian Ocean).(2)There are six lowvalue zones for both seasonal variability index(S_(v))and monthly variability index(M_(v))globally,with a similar spatial distribution as that of the six permanent stable zones.M_(v) and S_(v) in the Arabian Sea are the highest in the world.(3)After C_(v),M_(v) and S_(v) are comprehensively considered,the six permanent stable zones have an obvious advantage in the stability of wind energy over other sea areas,with C_(v) below 0.8,M_(v) within 1.0,and S_(v) within 0.7 all the year round.(4)The global stability of offshore wind energy shows a positive climatic trend for the past four decades.C_(v),M_(v) and S_(v) have not changed significantly or decreased in most of the global ocean during 1979 to2018.That is,wind energy is flat or more stable,while the monthly and seasonal variabilities tend to shrink/smooth,which is beneficial for wind energy utilization.(5)C_(v) in the low-latitude Pacific and M_(v) and S_(v) in both the North Indian Ocean and the low-latitude Pacific have an obvious abrupt phenomenon at the end of the20th century.展开更多
Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal powe...Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizon...A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizontal directions.With the Euler-Lagrange method,the coupled governing equations of the OWTENG are established and subsequently validated by experimental tests.The vibrational properties and output performance of the OWTENG for varying wind speeds are analyzed,demonstrating its effectiveness in capturing wind energy across a broad range of wind speeds(from 2.20 m/s to 8.84 m/s),and the OWTENG achieves its peak output power of 106.3μW at a wind speed of 5.72 m/s.Furthermore,the OWTENG maintains a steady output power across various wind directions within the speed range of 2.20 m/s to 7.63 m/s.Nevertheless,when the wind speed exceeds 7.63 m/s,the vibrational characteristics of the sphere shift based on the wind direction,leading to fluctuations in the OWTENG's output power.This research presents an innovative approach for designing vibrational triboelectric nanogenerators,offering valuable insights into harvesting wind energy from diverse directions and speeds.展开更多
Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive,and their use would release pollutants.Power systems that use both wind and solar energy are more reliable an...Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive,and their use would release pollutants.Power systems that use both wind and solar energy are more reliable and efficient than those that utilize only one energy.Hybrid renewable energy systems(HRES)are viable for remote areas operating in standalone mode.This paper aims to present the state-of-the-art research on off-grid solar-wind hybrid energy systems over the last two decades.More than 1500 published articles extracted from the Web of Science are analyzed by bibliometric methods and processed by CiteSpace to present the results with figures and tables.Productive countries and highly cited authors are identified,and hot topics with hotspot articles are shown in landscape and timeline views.Emerging trends and new developments related to techno-economic analysis and microgrids,as well as the application of HOMER software,are predicted based on the analysis of citation bursts.Furthermore,the opportunities of hybrid energy systems for sustainable development are discussed,and challenges and possible solutions are proposed.The study of this paper provides researchers with a comprehensive understanding and intuitive representation of standalone solar-wind hybrid energy systems.展开更多
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we...As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we assessed wind resources in terms of characteristic speeds,power and available energy.To this end,the Weibull distribution method was used and the following values were obtained:3.66 m/s for the average speed;1,102.83 W/m^(2)for the available power and 8,747.06 kWh/m^(2)/year for the annual available energy.展开更多
Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generati...Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.展开更多
The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region.In this study,the ERA5 reanalysis data are used to evaluate...The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region.In this study,the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region.A series of key indicators,such as wind power density,effective wind speed occurrence,energy level occurrence and stability,are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources.The results show that the Antarctic region contains abundant wind energy resources,which benefits the construction of scientific research stations.The superior areas are the Southern Ocean and the coast of the East Antarctica,followed by the Transantarctic Mountains,the coast of the Bellingshausen Sea and Amundsen Sea.These areas have advantages in terms of wind power density(500-2500 W/m2),effective wind speed occurrence(80%-90%),energy level occur-rence(60%-90%)and stability(Cv:0.6-1,Mv:1.2-1.8,Sv:0.8-1.2).The Antarctic’s wind energy resources in wind power density,effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer,while the coefficient of variation in summer is worse than that in autumn and winter.展开更多
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi...This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.展开更多
Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind e...Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind energy grows,it can be crucial to provide forecasts that optimize its performance potential.Artificial intelligence(AI)methods have risen in prominence due to how well they can handle complicated systems while enhancing the accuracy of prediction.This study explored the area of AI to predict wind-energy production at a wind farm in Yalova,Turkey,using four different AI approaches:support vector machines(SVMs),decision trees,adaptive neuro-fuzzy inference systems(ANFIS)and artificial neural networks(ANNs).Wind speed and direction were considered as essential input parameters,with wind energy as the target parameter,and models are thoroughly evaluated using metrics such as the mean absolute percentage error(MAPE),coefficient of determination(R~2),and mean absolute error(MAE).The findings accentuate the superior performance of the SVM,which delivered the lowest MAPE(2.42%),the highest R~2(0.95),and the lowest MAE(71.21%)compared with actual values,while ANFIS was less effective in this context.The main aim of this comparative analysis was to rank the models to move to the next step in improving the least efficient methods by combining them with optimization algorithms,such as metaheuristic algorithms.展开更多
This paper develops the modeling of wind speed by Weibull distribution in the intention to evaluate wind energy potential and help for designing small wind energy plant in Batouri in Cameroon. The Weibull distribution...This paper develops the modeling of wind speed by Weibull distribution in the intention to evaluate wind energy potential and help for designing small wind energy plant in Batouri in Cameroon. The Weibull distribution model was developed using wind speed data collected from a metrological station at the small Airport of Batouri. Four numerical methods (Moment method, Graphical method, Empirical method and Energy pattern factor method) were used to estimate weibull parameters K and C. The application of these four methods is effective using a sample wind speed data set. With some statistical analysis, a comparison of the accuracy of each method is also performed. The study helps to determine that Energy pattern factor method is the most effective (K = 3.8262 and C = 2.4659).展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e...With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy so...In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators.展开更多
Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge ...Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge but an industrial problem as well.The objective of this study is to introduce a concept of large-scale,non-grid-connected wind power(LSNGCWP) industrial zones and establish an evaluation model to assess their industrial arrangement.The data of wind energy,industry,nature resources and socio-economy were collected in this study.Using spatial overlay analysis of geographic information system,this study proposes a spatial arrangement of the LSNGCWP indus-trial zones in the coastal areas of China,which could be summarized as the 'one line and three circles' structure,which will contribute to the optimization of the industrial structure,advance the wind power technology,coordinate the multi-industrial cooperation,and upgrade the industrial transformation of China's coastal areas.展开更多
Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewabl...Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewable energy sources currently reduce GHG that are being emitted from the energy industries. According to the majority of long-term energy estimates, renewable energy will be a substantial addition to the supply of energy worldwide by the end of this century, as capacity of renewable energy is gradually increasing in the early decades. However, developing nations like Bangladesh are largely reliant on pricey imported energy supplies (coal, gas, and oil) that lay a heavy weight on the country’s economy. Also, air pollution growing in importance as a national and international environmental issue. Regarding the development of clean and sustainable energy, renewable energy sources seem to be among the most practical and efficient alternatives, in both Bangladesh and globally. The geographic advantages of Bangladesh allow for widespread usage of the majority of such renewable energy sources. The comparative potential and use of fossil fuels against renewable energy sources globally and in Bangladesh is explored in this review.展开更多
文摘This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
基金The Open Fund Project of Shandong Provincial Key Laboratory of Ocean EngineeringOcean University of China under contract No.kloe201901the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research under contract No.SKLEC-KF201707。
文摘The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the 40-year(1979–2018)ERA-Interim data from the European Center for Medium-Range Weather Forecasts,this study presented the spatial-temporal distribution and climatic trend of the stability of global offshore wind energy as well as the abrupt phenomenon of wind energy stability in key regions over the past 40 years with the climatic analysis method and Mann-Kendall(M-K)test.The results show the following 5 points.(1)According to the coefficient of variation(C_(v))of the wind power density,there are six permanent stable zones of global offshore wind energy:the southeast and northeast trade wind zones in the Indian,Pacific and Atlantic oceans,the Southern Hemisphere westerly,and a semi-permanent stable zone(North Indian Ocean).(2)There are six lowvalue zones for both seasonal variability index(S_(v))and monthly variability index(M_(v))globally,with a similar spatial distribution as that of the six permanent stable zones.M_(v) and S_(v) in the Arabian Sea are the highest in the world.(3)After C_(v),M_(v) and S_(v) are comprehensively considered,the six permanent stable zones have an obvious advantage in the stability of wind energy over other sea areas,with C_(v) below 0.8,M_(v) within 1.0,and S_(v) within 0.7 all the year round.(4)The global stability of offshore wind energy shows a positive climatic trend for the past four decades.C_(v),M_(v) and S_(v) have not changed significantly or decreased in most of the global ocean during 1979 to2018.That is,wind energy is flat or more stable,while the monthly and seasonal variabilities tend to shrink/smooth,which is beneficial for wind energy utilization.(5)C_(v) in the low-latitude Pacific and M_(v) and S_(v) in both the North Indian Ocean and the low-latitude Pacific have an obvious abrupt phenomenon at the end of the20th century.
基金supported by Jilin Province Higher Education Teaching Reform Research Project in 2021(JLJY202186163419).
文摘Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
基金Project supported by the National Natural Science Foundation of China(Nos.12202151 and 12272140)。
文摘A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizontal directions.With the Euler-Lagrange method,the coupled governing equations of the OWTENG are established and subsequently validated by experimental tests.The vibrational properties and output performance of the OWTENG for varying wind speeds are analyzed,demonstrating its effectiveness in capturing wind energy across a broad range of wind speeds(from 2.20 m/s to 8.84 m/s),and the OWTENG achieves its peak output power of 106.3μW at a wind speed of 5.72 m/s.Furthermore,the OWTENG maintains a steady output power across various wind directions within the speed range of 2.20 m/s to 7.63 m/s.Nevertheless,when the wind speed exceeds 7.63 m/s,the vibrational characteristics of the sphere shift based on the wind direction,leading to fluctuations in the OWTENG's output power.This research presents an innovative approach for designing vibrational triboelectric nanogenerators,offering valuable insights into harvesting wind energy from diverse directions and speeds.
基金This work was supported by Education Department of Hunan Province,China under Grant 22C013(Q.Zhou received this grant and the sponsor’s websites is https://jyt.hunan.gov.cn/).
文摘Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive,and their use would release pollutants.Power systems that use both wind and solar energy are more reliable and efficient than those that utilize only one energy.Hybrid renewable energy systems(HRES)are viable for remote areas operating in standalone mode.This paper aims to present the state-of-the-art research on off-grid solar-wind hybrid energy systems over the last two decades.More than 1500 published articles extracted from the Web of Science are analyzed by bibliometric methods and processed by CiteSpace to present the results with figures and tables.Productive countries and highly cited authors are identified,and hot topics with hotspot articles are shown in landscape and timeline views.Emerging trends and new developments related to techno-economic analysis and microgrids,as well as the application of HOMER software,are predicted based on the analysis of citation bursts.Furthermore,the opportunities of hybrid energy systems for sustainable development are discussed,and challenges and possible solutions are proposed.The study of this paper provides researchers with a comprehensive understanding and intuitive representation of standalone solar-wind hybrid energy systems.
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
文摘As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we assessed wind resources in terms of characteristic speeds,power and available energy.To this end,the Weibull distribution method was used and the following values were obtained:3.66 m/s for the average speed;1,102.83 W/m^(2)for the available power and 8,747.06 kWh/m^(2)/year for the annual available energy.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B1111010001)the National Natural Science Foundation of China (Grant Nos.52071096 and 52201322)+3 种基金the National Natural Science Foundation of China National Outstanding Youth Science Fund Project (Grant No.52222109)Guangdong Basic and Applied Basic Research Foundation (Grant No.2022B1515020036)the Fundamental Research Funds for the Central Universities (Grant No.2022ZYGXZR014)the State Key Laboratory of Coastal and Offshore Engineering through the Open Research Fund Program (Grant No.LP2214)。
文摘Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.
基金financially supported by the project of “Doctoralization of Master’s Program” of Marine Resources and Environment Research Group on the Maritime Silk Roadthe open fund project of Shandong Provincial Key Laboratory of Ocean Engineering,Ocean University of China (No. kloe201901)
文摘The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region.In this study,the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region.A series of key indicators,such as wind power density,effective wind speed occurrence,energy level occurrence and stability,are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources.The results show that the Antarctic region contains abundant wind energy resources,which benefits the construction of scientific research stations.The superior areas are the Southern Ocean and the coast of the East Antarctica,followed by the Transantarctic Mountains,the coast of the Bellingshausen Sea and Amundsen Sea.These areas have advantages in terms of wind power density(500-2500 W/m2),effective wind speed occurrence(80%-90%),energy level occur-rence(60%-90%)and stability(Cv:0.6-1,Mv:1.2-1.8,Sv:0.8-1.2).The Antarctic’s wind energy resources in wind power density,effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer,while the coefficient of variation in summer is worse than that in autumn and winter.
基金supported by the Natural Science Foundation of China(Grant No.52076079)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.
文摘Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind energy grows,it can be crucial to provide forecasts that optimize its performance potential.Artificial intelligence(AI)methods have risen in prominence due to how well they can handle complicated systems while enhancing the accuracy of prediction.This study explored the area of AI to predict wind-energy production at a wind farm in Yalova,Turkey,using four different AI approaches:support vector machines(SVMs),decision trees,adaptive neuro-fuzzy inference systems(ANFIS)and artificial neural networks(ANNs).Wind speed and direction were considered as essential input parameters,with wind energy as the target parameter,and models are thoroughly evaluated using metrics such as the mean absolute percentage error(MAPE),coefficient of determination(R~2),and mean absolute error(MAE).The findings accentuate the superior performance of the SVM,which delivered the lowest MAPE(2.42%),the highest R~2(0.95),and the lowest MAE(71.21%)compared with actual values,while ANFIS was less effective in this context.The main aim of this comparative analysis was to rank the models to move to the next step in improving the least efficient methods by combining them with optimization algorithms,such as metaheuristic algorithms.
文摘This paper develops the modeling of wind speed by Weibull distribution in the intention to evaluate wind energy potential and help for designing small wind energy plant in Batouri in Cameroon. The Weibull distribution model was developed using wind speed data collected from a metrological station at the small Airport of Batouri. Four numerical methods (Moment method, Graphical method, Empirical method and Energy pattern factor method) were used to estimate weibull parameters K and C. The application of these four methods is effective using a sample wind speed data set. With some statistical analysis, a comparison of the accuracy of each method is also performed. The study helps to determine that Energy pattern factor method is the most effective (K = 3.8262 and C = 2.4659).
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
文摘With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
文摘In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators.
基金Under the auspices of National Basic Research Program (No.2007CB210306)
文摘Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge but an industrial problem as well.The objective of this study is to introduce a concept of large-scale,non-grid-connected wind power(LSNGCWP) industrial zones and establish an evaluation model to assess their industrial arrangement.The data of wind energy,industry,nature resources and socio-economy were collected in this study.Using spatial overlay analysis of geographic information system,this study proposes a spatial arrangement of the LSNGCWP indus-trial zones in the coastal areas of China,which could be summarized as the 'one line and three circles' structure,which will contribute to the optimization of the industrial structure,advance the wind power technology,coordinate the multi-industrial cooperation,and upgrade the industrial transformation of China's coastal areas.
文摘Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewable energy sources currently reduce GHG that are being emitted from the energy industries. According to the majority of long-term energy estimates, renewable energy will be a substantial addition to the supply of energy worldwide by the end of this century, as capacity of renewable energy is gradually increasing in the early decades. However, developing nations like Bangladesh are largely reliant on pricey imported energy supplies (coal, gas, and oil) that lay a heavy weight on the country’s economy. Also, air pollution growing in importance as a national and international environmental issue. Regarding the development of clean and sustainable energy, renewable energy sources seem to be among the most practical and efficient alternatives, in both Bangladesh and globally. The geographic advantages of Bangladesh allow for widespread usage of the majority of such renewable energy sources. The comparative potential and use of fossil fuels against renewable energy sources globally and in Bangladesh is explored in this review.