Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener...The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.展开更多
In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T)...In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T),μ(x,0)=μ0(x)≥0,x∈Ω.By combining a priori estimate of global solution with property of stationary solution set of problem (P), we prove that the minimal stationary solution Uλ(x) of problem (P) is stable, whereas, any other stationary solution is an initial datum threshold for the existence and nonexistence of global solution to problem (P).展开更多
Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)...Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)when the metric evolves under the Ricci flow. As applications, we get Harnack inequalities to compare solutions at the same time.展开更多
For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equati...For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.展开更多
Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough hi...Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.展开更多
We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that th...We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.展开更多
The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau -...The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau - lambda \u\(gamma-1) u - betau ((x, t) is an element of Omega x (0, + infinity)), u(x, t) \(partial derivativeOmegax (0, +infinity)) = 0, u(x, 0) = u(0) (x) is an element of H-0(1) (Omega) boolean AND L1+gamma(Omega) (x is an element of Omega). Sufficient and necessary conditions about the extinction of the solutions is given. Here lambda > 0, gamma > 0, beta > 0 are constants, Omega is an element of R-N is bounded with smooth boundary partial derivativeOmega. At last, it is simulated with a higher order equation by using the present methods.展开更多
In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-...In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.展开更多
In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homoge...In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homogeneous as well as non-homogeneous partial differential equations involving four variables. The performance of quadruple Laplace transform is shown to be very encouraging by concrete examples. An elementary table of quadruple Laplace transform is also provided.展开更多
The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum...The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum, we make a priori estimate in a bound ball and prove the existence and uniqueness of the local strong solution of the Boussinesq equation.展开更多
A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix tra...A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically.展开更多
In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions...In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions in[1].展开更多
We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-...We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-dimensional sphere. We first obtain the expressions of n-D shock waves and rarefaction waves emitting from the initial discontinuity. Then, by estimating the new kind of interactions of the related elementary waves,we obtain the global structures of the non-selfsimilar solutions, in which ingenious techniques are proposed to construct the n-D shock waves. The asymptotic behaviors with geometric structures are also proved.展开更多
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
文摘The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.
基金supported by Natural Science Foundation of China(10971061)Hunan Provincial Innovation Foundation For Postgraduate(CX2010B209)
文摘In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T),μ(x,0)=μ0(x)≥0,x∈Ω.By combining a priori estimate of global solution with property of stationary solution set of problem (P), we prove that the minimal stationary solution Uλ(x) of problem (P) is stable, whereas, any other stationary solution is an initial datum threshold for the existence and nonexistence of global solution to problem (P).
文摘Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)when the metric evolves under the Ricci flow. As applications, we get Harnack inequalities to compare solutions at the same time.
文摘For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.
文摘Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.
文摘We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.
文摘The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau - lambda \u\(gamma-1) u - betau ((x, t) is an element of Omega x (0, + infinity)), u(x, t) \(partial derivativeOmegax (0, +infinity)) = 0, u(x, 0) = u(0) (x) is an element of H-0(1) (Omega) boolean AND L1+gamma(Omega) (x is an element of Omega). Sufficient and necessary conditions about the extinction of the solutions is given. Here lambda > 0, gamma > 0, beta > 0 are constants, Omega is an element of R-N is bounded with smooth boundary partial derivativeOmega. At last, it is simulated with a higher order equation by using the present methods.
文摘In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.
文摘In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homogeneous as well as non-homogeneous partial differential equations involving four variables. The performance of quadruple Laplace transform is shown to be very encouraging by concrete examples. An elementary table of quadruple Laplace transform is also provided.
文摘The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum, we make a priori estimate in a bound ball and prove the existence and uniqueness of the local strong solution of the Boussinesq equation.
文摘A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically.
基金Supported by the NNSF of China(11271066)Supported by the grant of Shanghai Education Commission(13ZZ048)
文摘In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions in[1].
基金partly supported by the National Natural Science Foundation of China (Grant11701551 and Grant 11971024)partly supported by the National Natural Science Foundation of China (Grant 11471332)。
文摘We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-dimensional sphere. We first obtain the expressions of n-D shock waves and rarefaction waves emitting from the initial discontinuity. Then, by estimating the new kind of interactions of the related elementary waves,we obtain the global structures of the non-selfsimilar solutions, in which ingenious techniques are proposed to construct the n-D shock waves. The asymptotic behaviors with geometric structures are also proved.