In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogene...Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogeneity of subsoil condition due to various construction effects.Studies have shown that the damage mechanism of shallow underground structures mainly depends on the inhomogeneity of the subsoil conditions.This would become a considerable factor for the stability of the underground utility tunnel structures.However,this type of research still needs to establish the vulnerable seismic design.In this study,a series of shaking table tests were conducted on non-homogenous soils to investigate the performance of seismic interaction between utility tunnels,surrounding soils and interior pipelines.The dynamic responses measured from the test account for the boundary condition of non-homogeneous soils,the internal forces,displacement of tunnel joints,the dynamic characteristics on interior pipelines and the reasonable spring stiffness with damping in the seismically isolated gas pipeline model inside the tunnel.The vulnerability of underground utility tunnel in non-homogeneous soil zone and the mechanism of the stability of interior facilities are the main topics discussed in this paper.展开更多
A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the gove...A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure.展开更多
In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solut...In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.展开更多
Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonaliza...Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonalization procedure and adopted in the Rayleigh-Ritz method. Accuracy and applicability of the method are examined by comparison of the results for different boundary conditions and material types with those available in literature. It is found that this method has good accuracy regardless of type of boundary condition and yields very accurate results even with low number of terms of orthogonal polynomials for the first mode of vibration. For higher modes of vibration, higher terms of orthogonal polynomials should be used. The effects of foundation parameter, density and non-homogeneity parameters on natural frequency are examined. It is concluded that natural frequency of plates are more sensitive to shearing layer coefficient rather than Winkler coefficient and density parameter has weakening effect on natural frequency.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
In this paper, the authors establish the(L^p(μ), L^q(μ))-type estimate for fractional commutator generated by fractional integral operators Tα with Lipschitz functions(b ∈ Lipβ(μ)),where 1 < p < 1/(α + β...In this paper, the authors establish the(L^p(μ), L^q(μ))-type estimate for fractional commutator generated by fractional integral operators Tα with Lipschitz functions(b ∈ Lipβ(μ)),where 1 < p < 1/(α + β) and 1/q = 1/p-(α + β), and obtain their weak(L^1(μ), L^(1/(1-α-β))(μ))-type. Moreover, the authors also consider the boundedness in the case that 1/(α+β) < p < 1/α,1/α≤ p ≤∞ and the endpoint cases, namely, p = 1/(α + β).展开更多
This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial ...This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.展开更多
New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aimin...New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.展开更多
In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our metho...In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.展开更多
Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of off...Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.展开更多
Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to ...Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to understand the differences of each material composing each subsystem, and the connection types between the elements of each one of this subsystem. Some floors integrating lightweight elements without structural purposes, are broadly used in several countries in precast slabs. The predictions based on computer modelling for building systems can be influenced by the input parameters related to connections between the elements of the floor system. In building structures, the analysis of radiation due to element vibrations may be represented by wave propagation relationships as a one-dimensional system, a two-dimensional system or a three-dimensional solid. In these floors, the modelling of the interaction between elements can be basically a face, a line or a point connection. In addition, the choice of the connection type can determine the vibration transmission amongst all the floor elements. This study focuses on the differences that can be obtained in the induced vibration response due to an impact source on non-homogeneous slabs. It also presents some examples of modelling options for several floor systems, considering input parameters for different connection types.展开更多
We obtain weak type (1, q) inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces. The proofs use some properties of maximal operators. Our results are closely related to the str...We obtain weak type (1, q) inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces. The proofs use some properties of maximal operators. Our results are closely related to the strong type inequalities in [13, 14, 15].展开更多
Ge condensation process of a sandwiched structure of Si/SiGe/Si on silicon-on-insulator (SOI) to form SiGe-on- insulator (SGOI) substrate is investigated. The non-homogeneity of SiGe on insulator is observed after...Ge condensation process of a sandwiched structure of Si/SiGe/Si on silicon-on-insulator (SOI) to form SiGe-on- insulator (SGOI) substrate is investigated. The non-homogeneity of SiGe on insulator is observed after a long time oxidation and annealing due to an increased consumption of silicon at the inflection points of the corrugated SiGe film morphology, which happens in the case of the rough surface morphology, with lateral Si atoms diffusing to the inflection points of the corrugated SiGe film. The transmission electron microscopy measurements show that the non-homogeneous SiGe layer exhibits a single crystalline nature with perfect atom lattice. Possible formation mechanism of the non-homogeneity SiGe layer is presented by discussing the highly nonuniform oxidation rate that is spatially dependent in the Ge condensation process. The results are of guiding significance for fabricating the SGOI by Ge condensation process.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金National Key Research and Invention Program of The Thirteenth under Grant Nos.2016YFC0802407,2018YFC0809605。
文摘Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogeneity of subsoil condition due to various construction effects.Studies have shown that the damage mechanism of shallow underground structures mainly depends on the inhomogeneity of the subsoil conditions.This would become a considerable factor for the stability of the underground utility tunnel structures.However,this type of research still needs to establish the vulnerable seismic design.In this study,a series of shaking table tests were conducted on non-homogenous soils to investigate the performance of seismic interaction between utility tunnels,surrounding soils and interior pipelines.The dynamic responses measured from the test account for the boundary condition of non-homogeneous soils,the internal forces,displacement of tunnel joints,the dynamic characteristics on interior pipelines and the reasonable spring stiffness with damping in the seismically isolated gas pipeline model inside the tunnel.The vulnerability of underground utility tunnel in non-homogeneous soil zone and the mechanism of the stability of interior facilities are the main topics discussed in this paper.
基金The project supported by the National Natural Science Foundation of China (10172075 and 10002016)
文摘A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure.
基金Project (No. 20030335027) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.
文摘Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonalization procedure and adopted in the Rayleigh-Ritz method. Accuracy and applicability of the method are examined by comparison of the results for different boundary conditions and material types with those available in literature. It is found that this method has good accuracy regardless of type of boundary condition and yields very accurate results even with low number of terms of orthogonal polynomials for the first mode of vibration. For higher modes of vibration, higher terms of orthogonal polynomials should be used. The effects of foundation parameter, density and non-homogeneity parameters on natural frequency are examined. It is concluded that natural frequency of plates are more sensitive to shearing layer coefficient rather than Winkler coefficient and density parameter has weakening effect on natural frequency.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金Supported by the National Natural Science Foundation of China(Grant No.11661075).
文摘In this paper, the authors establish the(L^p(μ), L^q(μ))-type estimate for fractional commutator generated by fractional integral operators Tα with Lipschitz functions(b ∈ Lipβ(μ)),where 1 < p < 1/(α + β) and 1/q = 1/p-(α + β), and obtain their weak(L^1(μ), L^(1/(1-α-β))(μ))-type. Moreover, the authors also consider the boundedness in the case that 1/(α+β) < p < 1/α,1/α≤ p ≤∞ and the endpoint cases, namely, p = 1/(α + β).
基金supported by the National Natural Science Foundation of China (10872050, 11172055)the Fundamental Research Funds for the Centred Universities (DUT11ZD(G)01)
文摘This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 51319030302 and Grant No. 9140A19030506KG0166)
文摘New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.
基金partly supported by Natural Science Foundation of China(11471332 and 11071246)
文摘In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.
文摘Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.
文摘Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to understand the differences of each material composing each subsystem, and the connection types between the elements of each one of this subsystem. Some floors integrating lightweight elements without structural purposes, are broadly used in several countries in precast slabs. The predictions based on computer modelling for building systems can be influenced by the input parameters related to connections between the elements of the floor system. In building structures, the analysis of radiation due to element vibrations may be represented by wave propagation relationships as a one-dimensional system, a two-dimensional system or a three-dimensional solid. In these floors, the modelling of the interaction between elements can be basically a face, a line or a point connection. In addition, the choice of the connection type can determine the vibration transmission amongst all the floor elements. This study focuses on the differences that can be obtained in the induced vibration response due to an impact source on non-homogeneous slabs. It also presents some examples of modelling options for several floor systems, considering input parameters for different connection types.
基金Supported by Fundamental Research Program 2011-2012
文摘We obtain weak type (1, q) inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces. The proofs use some properties of maximal operators. Our results are closely related to the strong type inequalities in [13, 14, 15].
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2012CB933503 and 2013CB632103)the National Natural Science Foundation of China(Grant Nos.61176092,61036003,and 60837001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110121110025)the Fundamental Research Funds for the Central Universities,China(Grant No.2010121056)
文摘Ge condensation process of a sandwiched structure of Si/SiGe/Si on silicon-on-insulator (SOI) to form SiGe-on- insulator (SGOI) substrate is investigated. The non-homogeneity of SiGe on insulator is observed after a long time oxidation and annealing due to an increased consumption of silicon at the inflection points of the corrugated SiGe film morphology, which happens in the case of the rough surface morphology, with lateral Si atoms diffusing to the inflection points of the corrugated SiGe film. The transmission electron microscopy measurements show that the non-homogeneous SiGe layer exhibits a single crystalline nature with perfect atom lattice. Possible formation mechanism of the non-homogeneity SiGe layer is presented by discussing the highly nonuniform oxidation rate that is spatially dependent in the Ge condensation process. The results are of guiding significance for fabricating the SGOI by Ge condensation process.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.